SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107 - o
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING IO

&, python

191T103 - COMPUTATIONAL THINKING
AND PYTHON PROGRAMMING

% A readable, dynamic, pleasant, flexible, fast and powerful
language

lterative statements are used for repeated execution

‘for’ and ‘while’” are two looping statements used in
python

‘for loop’ is definite loop whereas ‘while loop’ is
indefinite loop

State is the change in the behaviour of the objects

Agenda

* Loop control statements
— break

— continue
®* PAass statement
* Functions

— Definition and use
— Flow of Execution

3.2 Iterations

Sometimes there may be a need to exit the loop completely
when an external condition is triggered or there may be a
situation to skip a part of the code and start the next
execution.

Python provide the following statements

In Python, break and continue statements can alter the
flow of a normal loop.

Loops iterate over a block of code until test expression is
false, to terminate the current iteration or even the
whole loop without checking test expression.

The break and continue statements are used in these
cases.

3.2 Iterations

* The break statement terminates the loop
containing it.

* Control of the program is transferred to the
statement which is present immediately after
the body of the loop.

* |f break statement is inside a nested loop
(loop inside another loop), break will
terminate the innermost loop.

3.2 Iterations
3.2.4. break Statement

Syntax:
break
Example 1:
for val in "string™:
if val == "1":
Output: orint (val)

print ("The end")

S
t

r

The end
>>> |

3.2 Iterations
3.2.4. break Statement

Example 2:

i=1
while i<=10:
print (i)
1f(1==5):
break
1=1+1

print ("completed")

Output:

[L Y S PR I o I

cmpleted

3.2 Iterations

3.2.5. continue Statement

* The continue statement is used to skip the

rest of the code inside a loop for the current
iteration only.

* Loop does not terminate but continues on
with the next iteration.

Syntax:

continue

3.2 Iterations
3.2.5. continue Statement

Example 1:
for val 1n "string":
1f val == "1":
continue
print(val)

print ("The end")

Output:

he end

3.2 Iterations

e pass is used when a statement is required
syntactically but you do not want any
command or code to execute.

* The pass statement is a null operation;
nothing happens when it executes.

* The pass is also useful in places where your
code will eventually go, but has not been
written yet.

3.2 Iterations

3.2.5. pass Statement

Syntax
pass
Example 1:
for letter in "Python™:
1f letter == 'h':
ﬁrint("Thiﬁ is5 pass block™)
continue
print ("Current Letter :",letter)
print ("Good bye!™)
Output:

Current Letter : P
Current Letter : y
Current Letter : t
This 1is pass block
Current Letter : o
Current Letter : n
Good bye!

3.2 Iterations
3.2.5. pass Statement

Example:
for num in [20, 11, 9, 66, 4, 89, 44]:
17 num$2 == 0:
else:
print (num)
11
9

89

3.4 Functions

Python Functions is a block of related statements designed to
perform a computational, logical, or evaluative task.

Function blocks begin with the keyword def followed by the
function name and parentheses (()).

Any input parameters or arguments should be placed within these
parentheses. You can also define parameters inside these
parentheses.

The first statement of a function can be an optional statement - the
documentation string of the function or docstring.

The code block within every function starts with a colon (:) and is
indented.

The statement return [expression] exits a function, optionally
passing back an expression to the caller. A return statement with no
arguments is the same as return None.

3.4 Functions
Syntax:

def function name(parameters):

e mn

"""docstring
statement(s)

return expression

3.4 Functions
Function Definition and Use

* |[n Python a function is defined using the def
keyword:

def my function():

orint("Hello from a function”)

* To call a function, use the function name
followed by parenthesis:

def my_function():

orint("Hello from a function")

my function()

3.4 Functions

Function Definition and Use

one() { Call Stack
console.log('A');

two () ;

console.log('C"');

¥

two() {

console.log('B');

¥

one();
Console R—

3.4 Functions
Function Definition and Use
Example

* https://replit.com/@ErAmbikaM/functionexa
mple#main.py

https://replit.com/@ErAmbikaM/functionexample
https://replit.com/@ErAmbikaM/functionexample

3.4 Functions

Flow of Execution

Flow of execution - the order in which statements are
executed

Execution always starts at the first statement of the
program

Statements execute one at a time from top to bottom
Functions definitions do not alter the flow of execution

When a function is called, the flow control will jump to
the first line of the called function

Then, it will execute all the statements there. After
that, it will come back to pick up where it left off.

3.4 Functions

Flow of Execution

def func():

return

"N_"‘,“' +ho rantra
SCHU LT LU 1L 19)

3.4 Functions
Flow of Execution

Program to add two numbers
def sum(a,b):

c=a+b

return c

numl=int(input(“Enter value™))
num2= int(input(“Enter value”))
res=sum(numl,num2)
print("Sum=",res)

P NAY B e

#statement 1
#statement 2

#statement 4
#statement 5
#statement 6
#statement 7

Summary

“break” statement is used terminate the loop in
between the iterations

“continue” statement is used to skip an iteration

“pass” statement acts as a placeholders for future
code

Python Functions is a block of related statements
designed to perform a computational, logical, or
evaluative task.

Flow of execution is the order in which
statements are executed

THANK Y®U

