

SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

19IT103 – COMPUTATIONAL THINKING AND PYTHON PROGRAMMING

*A readable, dynamic, pleasant, flexible, fast and powerful language

Recap:

- Simple strategies for developing algorithms:
 - Iteration
 - Recursion

- Iteration: A sequence that is executed repeatedly so long as a certain condition holds. A sequence of statements is executed until a specified condition is true is called iterations.
 - for loop
 - While loop

Recap:

- Simple strategies for developing algorithms:
 - Iteration
 - Recursion

- Recursion: A function that calls itself is known as recursion.
- Recursion is a process by which a function calls itself repeatedly until some

specified condition has been satisfied.

1.8 Illustrative problems:

- Find a minimum in a list
- insert a card in a list of sorted cards

• To find the minimum element in the given list of elements.

Minimum Number In a List

Problem Statement:

• The problem is to find the minimum element in the given list of elements. Finding minimum in a list of elements can be achieved in different ways.

Different ways to find minimum element in a list:

- One way is to sort the list of elements in ascending order and get the first element as minimum.
- Another method is to compare each element with other.
 - As an initial step, <u>first element of the list is considered as</u> minimum element.
 - And in each iteration, each element in the list is compared with the minimum.
 - If the element in the list is less than the minimum then swap both elements else compare with the next element in the list.
 - These steps are continued until the end of the list and finally print the minimum.

Find minimum of two numbers:

```
#find minimum of two numbers
# a and b are parameters''
def find min(a, b):
    if a < b:
        return a
    return b
print("Enter two values :")
a = int(input())
b = int(input())
print("Minimum number is ", find_min(a, b))
```

Find minimum of two numbers:

ma	in.py	Shell
1 -	<pre>def find_min(a,b):</pre>	Enter two values:
2 -	if(a <b):< td=""><td>5</td></b):<>	5
3	return a	88
4	return b	Minimum number is 5
5		>
6	<pre>print("Enter two values:")</pre>	
7	a=int(input())	
8	<pre>b=int(input())</pre>	
9	<pre>print("Minimum number is ",find_min(a,b))</pre>	
10		

Find minimum of three numbers:

```
#find minimum of three numbers
def find min(a, b):
    if a < b:
        return a
    return b
# a, b and c are parameters
def min of three(a, b, c):
    minVal = find_min(a, b)
    if c < minVal:</pre>
        return c
    return minVal
print("Enter three numbers: ")
a = int(input())
b = int(input())
c = int(input())
print("Minimum number is ", min_of_three(a, b, c))
```

Find minimum of three numbers:

main.p	ру	53 6	Run	Shell
1 - de 2 - 3 4 5 6 - de 7 8 - 9 10 11	<pre>f find_min(a,b): if(a<b): a="" b="" c="" c<minval:="" f="" if="" min_of_three(a,b,c):="" minval="find_min(a,b)" minval<="" pre="" return=""></b):></pre>			Enter three values: 77 3 56 Minimum number is 3 >
<pre>12 print("Enter three values:") 13 a=int(input()) 14 b=int(input()) 15 c=int(input()) 16 print("Minimum number is ",min_of_three(a,b,c)) 17</pre>				

Find minimum number in a list:

```
# find minimum of a list
def min of list(aList):
    if not alist.
        return None
    minVal = aList[0]
    for number in aList[1:]:
        if number < minVal:
            minVal = number
    return minVal
myList = []
limit = int(input("Enter the limit: "))
print("Enter the elements:\n")
for i in range(limit):
    element = int(input())
    myList.append(element)
```

```
print("Minimum of list is ", min_of_list(myList))
```

Find minimum number in a list:

main.p	NY CORUN	Shell
1 - de 2 - 3 4 5 - 6 -	<pre>f min_of_list(aList): if not aList: return None minVal = aList[0] for number in aList[1:]: if number < minVal:</pre>	Enter the limit: 5 Enter the elements: -1 5 -2
7 8 9	<pre>minVal = number return minVal</pre>	6 8 Minimum of list is -2
10 myl 11 lin 12 pr 13 - for	List = [] mit = int(input("Enter the limit: ")) int("Enter the elements:\n") r i in range(limit):	>
14 15 16	<pre>element = int(input()) myList.append(element)</pre>	
17 pr:	<pre>int("Minimum of list is ", min_of_list(myList))</pre>	

Insert a card in a list of sorted cards

Playing cards are one of the techniques of sorting and the steps are shown as follows:

- Start with an empty left hand and cards face down on the table.
- Then remove one card at a time from the table and Insert it into the correct position in the left hand.
- <u>To find a correct position for a card</u>, we compare it with each of the cards already in the hand from left to right.
- Once the position is found, the cards from that position are moved to the next higher indexed position and in that order.
- New card is inserted at the current position.

```
order = {
   'A': 1, '2': 2, '3': 3, '4': 4,
    '5': 5, '6': 6, '7': 7, '8': 8,
    '9': 9, '10': 10,
    'J': 11, '0': 12, 'K': 13
}
def insertCard(deck, newCard):
   for card in deck:
        if order[card] > order[newCard]:
           index = deck.index(card)
           deck.insert(index, newCard)
           break
    return deck
deck = ['2', '5', '8', '10', 'J', 'K'] # initial set of cards
print("deck = ", deck)
newCard = input("Enter the new card to be inserted:") # get the new card
insertCard(deck, newCard)
print(deck)
```

Output 1:

```
1 - order = {
                                                         deck = ['2', '5', '8', '10', 'J', 'K']
      'A': 1, '2': 2, '3': 3, '4': 4,
                                                          Enter the new card to be inserted:Q
 2
      '5': 5, '6': 6, '7': 7, '8': 8,
                                                          ['2', '5', '8', '10', 'J', '0', 'K']
 3
 4
      '9': 9, '10': 10,
                                                          >
 5
       'J': 11, '0': 12, 'K': 13
6 }
7
 8
9 - def insertCard(deck, newCard):
       for card in deck:
10 -
11 -
           if order[card] > order[newCard]:
               index = deck.index(card)
12
               deck.insert(index, newCard)
13
               break
14
       return deck
15
16
17
18 deck = ['2', '5', '8', '10', 'J', 'K'] # initial
       set of cards
19 print("deck = ", deck)
20 newCard = input("Enter the new card to be inserted
       :") # get the new card
```

Output 2:

Summary:

1. Find a minimum in a list :

- One way is to sort the list of elements in ascending order and get the first element as minimum.
- Another method is to compare each element with other.
 - As an initial step, first element of the list is considered as minimum element.
 - And in each iteration, each element in the list is compared with the minimum.
 - If the element in the list is less than the minimum then swap both elements else compare with the next element in the list.
 - These steps are continued until the end of the list and finally print the minimum.

Summary:

- 2. insert a card in a list of sorted cards :
 - Start with an empty left hand and cards face down on the table.
 - Then remove one card at a time from the table and Insert it into the correct position in the left hand.
 - To find a correct position for a card, we compare it with each of the cards already in the hand from left to right.
 - Once the position is found, the cards from that position are moved to the next higher indexed position and in that order.
 - New card is inserted at the current position.

