
19IT103 – COMPUTATIONAL THINKING

AND PYTHON PROGRAMMING

A readable, dynamic, pleasant, flexible, fast and powerful

language

SNS COLLEGE OF ENGINEERING

 Kurumbapalayam (Po), Coimbatore – 641 107

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

1

Recap:

• An algorithm is a sequence of non ambiguous instructions for solving a

problem in a finite amount of time.

• An input to an algorithm specifies an instance of the problem the algorithm

solves.

• Algorithm can be specified in a natural language or a pseudocode; they can

also be implemented as computer programs.

Recap:

• Algorithm design techniques are general approaches to solving problems

algorithmically, applicable to a verity of problems from different areas of

computing.

• The same problem can often be solved by several algorithms.

• Algorithms operate on data. This makes the issue of data structuring critical

for efficient algorithmic problem solving.

1.7 Simple strategies for developing algorithms:

• An algorithm is a defined set of step-by-step procedures that provides the

correct answer to a particular problem.

• There are some simple strategies for developing algorithms:

• Iteration

• Recursion

• Brute force.

• Backtracking.

• Greedy Method (Heuristics)

• Divide and Conquer.

• Dynamic Programming.

• Branch and Bound.

•

1.7 Simple strategies for developing algorithms:

1.7.1 Iteration:

• A sequence that is executed repeatedly so long as a certain condition holds.

• A sequence of statements is executed until a specified condition is true is

called iterations.

• for loop

• while loop

1.7 Simple strategies for developing algorithms:

1.7.1 Iteration:

for loop:

• The for-loop sets up a control variable that manages execution of the loop.

• Execution iterates over the items in a sequence (the value of each item is

assigned to the control variable at the beginning of each pass through the

loop).

• That sequence could, for example, be a list.

• In the following code sample, the variable word is used as a control variable.

• At the beginning of each iteration of the loop, it is assigned the next value

from the list words from beginning to end.

1.7 Simple strategies for developing algorithms:

1.7.1 Iteration:

for loop:

• Syntax of for loop:

FOR(start-value to end-value) DO

Statement

...

ENDFOR

1.7 Simple strategies for developing algorithms:

1.7.1 Iteration:

• for loop: example 1:

• # This prints out the length of each word in a list of words

 words = [‘my’, ‘big’, ‘meal’, ‘comes’, ‘mostly’, ‘bearing’, ‘doubtful’,

‘garnishes’]

 for word in words:

 # The following line prints the length of the word

 print(len(word))

 # Prints: 2 3 4 5 6 7 8 9

1.7 Simple strategies for developing algorithms:

1.7.1 Iteration:

• for loop: example 2:

• if you know exactly how many iterations to execute, a range:

 for number in range(1, 13):

 print(number * 42)

 # Prints out the 42 times table

1.7 Simple strategies for developing algorithms:

1.7.1 Iteration:

• for loop: example 3: Print n natural numbers

BEGIN

 GET n

 INITIALIZE i=1

 FOR (i<=n) DO

 PRINT i

 i=i+1

 ENDFOR

END

1.7 Simple strategies for developing algorithms:

1.7.1 Iteration:

While loop:

• The while loop executes a block of instructions repeatedly for as long as

some condition evaluates to true.

• The value of the condition is only checked at the beginning of each

iteration.

• As soon as the condition evaluates to false, the loop ends and execution

jumps immediately to the next line following the end of the while block.

1.7 Simple strategies for developing algorithms:

1.7.1 Iteration:

While loop:

• Syntax of while loop:

WHILE (condition) DO

Statement

...

ENDWHILE

1.7 Simple strategies for developing algorithms:

1.7.1 Iteration:

While loop: example 1:

• #This program invites the user to guess a number (set in the# age variable). As long as they

haven’t guessed correctly, the program keeps asking.

age = 25

guess = 0

while age != guess:

 # Whereas a == b tests whether a and b are equal, a != b tests whether a and b are not equal

 # The int() function turns the user’s input (which is text) into an integer.

 guess = int(input(‘Guess how old I am> ‘))

print(‘You got it right!’)

1.7 Simple strategies for developing algorithms:

1.7.1 Iteration:

While loop: example 2: Print n natural numbers :

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

PRINT i

i=i+1

ENDWHILE

END

1.7 Simple strategies for developing algorithms:

1.7.1 Iteration:

While loop: example 3: To find power of a number :

TASK: To Find Power of a number

READ number

READ Power

Initialize result with number and pow with Power

WHILE pow< Power:

result = result * number

Increase pow by 1

End Loop

PRINT result

End

1.7 Simple strategies for developing algorithms:

1.7.2 Recursion:

• A function that calls itself is known as recursion.

• Recursion is a process by which a function calls itself repeatedly until some

specified condition has been satisfied.

• A physical world example would be to place two parallel mirrors facing

each other. Any object in between them would be reflected recursively.

1.7 Simple strategies for developing algorithms:

1.7.2 Recursion:

• Python Recursive Function

1.7 Simple strategies for developing algorithms:

1.7.2 Recursion:

• Algorithm for factorial of n numbers using recursion:

 Main function:
 Step1: Start
 Step2: Get n
 Step3: call factorial(n)
 Step4: print fact
 Step5: Stop

 Sub function factorial(n):
 Step1: if(n==1) then fact=1 return fact
 Step2: else fact=n*factorial(n-1) and return fact

1.7 Simple strategies for developing algorithms:

1.7.2 Recursion:

• Pseudo code for factorial using recursion:

 Main function:
 BEGIN
 GET n
 CALL factorial(n)
 PRINT fact
 END

 Sub function factorial(n):
 IF(n==1) THEN
 fact=1
 RETURN fact
 ELSE
 RETURN fact=n*factorial(n-1)

1.7 Simple strategies for developing algorithms:

1.7.2 Recursion:

factorial(3) # 1st call with 3

3 * factorial(2) # 2nd call with 2

3 * 2 * factorial(1) # 3rd call with 1

3 * 2 * 1 # return from 3rd call as number=1

3 * 2 # return from 2nd call

6 # return from 1st call

1.7 Simple strategies for developing algorithms:

1.7.2 Recursion:

1.7 Simple strategies for developing algorithms:

1.7.2 Recursion:

Advantages of Recursion:

• Recursive functions make the code look clean and elegant.

• A complex task can be broken down into simpler sub-problems using

recursion.

• Sequence generation is easier with recursion than using some nested

iteration.

1.7 Simple strategies for developing algorithms:

1.7.2 Recursion:

Disadvantages of Recursion:

• Sometimes the logic behind recursion is hard to follow through.

• Recursive calls are expensive (inefficient) as they take up a lot of memory

and time.

• Recursive functions are hard to debug.

Summary:

• Simple strategies for developing algorithms:

• Iteration

• Recursion

• Iteration: A sequence that is executed repeatedly so long as a certain condition holds. A

sequence of statements is executed until a specified condition is true is called iterations.

• for loop

• While loop

• Recursion: A function that calls itself is known as recursion.

• Recursion is a process by which a function calls itself repeatedly until some specified

condition has been satisfied.

