SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107 ~—

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING

FITITIONS

&, python

191'T103 —= COMPUTATIONAL THINKING
AND PYTHON PROGRAMMING

“* A readable, dynamic, pleasant, flexible, fast and powerful
language

Recap:

* Notations (pseudocode, flow chart, programming language).

* Flowcharts are a graphical means of representing an algorithm
* Flowchart 1s a diagrammatic representation of sequence of logical steps of a

program.

* A programming language 1s a formal language that specifies a set of
instructions that can be used to produce various kinds of output.

* Programming languages generally consist of instructions for a computer.

* Eg:C, C++, COBAL, JAVA, Python ... Etc

1.6 Algorithmic problem solving:

* An algorithm is a defined set of step-by-step procedures that provides the

correct answer to a particular problem.

* Algorithmic problem solving is solving problem that require the formulation

of an algorithm for their solution.

* The formulation of algorithm 1s always been an important element of problem

solving.

* We can consider algorithms to be procedural solutions to problems.

1.6 Algorithmic problem solving:

Understand the problem

Decide on:
computational means,
exact vs. approximate solving,
algorithm design technique

v
Design an algorithm

Prove correctness

4
Analyze the algorithm

Code the algorithm

Figure 1: Algorithm design and analysis process

1.6 Algorithmic problem solving:

The fundamental steps are:

Understanding the problem

Ascertaining the capabilities of computational device
Choose between exact and approximate problem solving
Decide on appropriate data structures

Algorithm design techniques

Methods for specifying the algorithm

Proving an algorithm’s correctness

Analyzing an algorithm

Coding an algorithm

1.6 Algorithmic problem solving:

1. Understanding the problem :

* The first thing we need to do before designing an algorithm is to understand

completely the problem given.

* Read the problem’s description carefully and ask questions if you have

any doubts about the problem.

* An input to an algorithm specifies an instance of the problem the algorithm

solves.

1.6 Algorithmic problem solving:

1. Understanding the problem :

* It 1s very important to specify exactly the range of instances the algorithm

needs to handle.

* Correct algorithm is not one that works most of the time, but one that

works correctly for all legitimate inputs.

* Do not skip on this first step of algorithmic problem-solving process; if we

do, then we need to do unnecessary rework on it.

1.6 Algorithmic problem solving:

2. Ascertain the capabilities of computational device :

* Once you completely understand a problem, you need to ascertain the

capabilities of the computational device the algorithm is intended for.

* If the instructions are executed one after another, one operation at a time.
Algorithms designed to be executed on such machines are called sequential
algorithm.

* If the instructions are executed concurrently, it is called parallel algorithm.

1.6 Algorithmic problem solving:

3. Choose between exact and approximate problem solving :

* Next principal decision 1s to Choose between solving the problem exactly or

solving the problem approximately.

* Case 1: solving the problem exactly — an algorithm 1s called exact algorithm

* Case 2: solving the problem approximately — an algorithm 1is called
approximation algorithm.

* First, some important problems cannot be solved exactly for most of their
instances; example — extracting square roots solving nonlinear equations.

* Second, available algorithm for solving a problem exactly can be

unacceptably slow because of the problem’s intrinsic complexity

1.6 Algorithmic problem solving:

4. Decide on appropriate data structures :

* Data structure plays a vital role in designing and analysis the algorithms.

* Some of the algorithm design techniques also depend on the structuring or

restructuring data specifying a problem’s instance.

* Algorithm+ Data structure=programs.

1.6 Algorithmic problem solving:

5. Algorithm Design Techniques:

* An algorithm design technique (or “strategy” or “paradigm”) is a general
approach to solving problems algorithmically that is applicable to a variety
of problems from different areas of computing.

* Learning these techniques is of atmost importance for the following reasons:

* First, they provide guidance for designing algorithms for new problems,
ex : problems for which there 1s no known satisfactory algorithm.
* Second, algorithms are the cornerstone of computer science.
* Algorithm design techniques make it possible to classify algorithms

according to an underlying design idea.

1.6 Algorithmic problem solving:

6. Methods of Specifying an Algorithm:

* Three ways to specify an algorithm
* Pseudocode
* Flowchart

* Programming language

1.6 Algorithmic problem solving:

6. Methods of Specifying an Algorithm:..

6.1 Pseudocode :

e Pseudocode 1s a mixture of a natural language and programming language-

like constructs.

* Pseudocode is usually more precise than natural language, and its usage often

yields more concise algorithm descriptions.

1.6 Algorithmic problem solving:

6. Methods of Specifying an Algorithm:..

6.2 Flowchart:

* In the earlier days of computing, the dominant vehicle for specifying
algorithms was a flowchart.
* A Flow chart is a method of expressing an algorithm by a collection of

connected geometric shapes containing descriptions of the algorithm’s steps.

1.6 Algorithmic problem solving:

6. Methods of Specifying an Algorithm:..

6.3 Programming language:

* A programming language i1s a formal language that specifies a set of

instructions that can be used to produce various kinds of output.

* Programming languages generally consist of instructions for a computer.
* Programming languages can be used to create programs that implement

specific algorithms.

« Eg:C, C++, COBAL, JAVA, Python ... Etc

1.6 Algorithmic problem solving:

7. Proving an Algorithm’s correctness:

* Once the algorithm has been specified, then its correctness must be proved.

* An algorithm must yield a required result for every legitimate input in a finite

amount of time.

* For some algorithm, a proof of correctness is quite easy; for others, it can be

quite complex.

1.6 Algorithmic problem solving:

7. Proving an Algorithm’s correctness:..

* A common technique for proving correctness is to use mathematical
: : . . :
induction because an algorithm’s iterations provide a natural sequence of

steps needed for such proofs.

* The notion of correctness for approximation algorithm is less straightforward

than it 1s for exact algorithms.

1.6 Algorithmic problem solving:

8. Analyzing an Algorithm:

* Our algorithms need to possess several qualities. After correctness, the most

important one 1s efficiency.

* There are two kind of algorithm efficiency: 1) Time efficiency 1ii) Space

efficiency

* Time efficiency: Indicates how fast the algorithm runs.

1.6 Algorithmic problem solving:

8. Analyzing an Algorithm:..

* Space efficiency: indicates how much extra memory the algorithm needs.

* Another desirable characteristic’s of an algorithm are simplicity and

generality.

 If you are not satisfied with the algorithm’s efficiency, simplicity, or

generality, you must return to the drawing board and redesign the algorithm.

1.6 Algorithmic problem solving:

9. Coding an Algorithm:

* Most algorithms are destined to be ultimately implemented as computer

programs.

* The coding / implementation of an algorithm is done by a suitable

programming language like C, C++, JAVA

* It 1s very essential to write an optimized code (efficient code) to reduce the

burden of compiler.

1.6 Algorithmic problem solving:

* As arule a good algorithm is a result of repeated effort and rework.

* Even if you have been fortunate enough to get an algorithmic idea that seems

perfect, you should still try to see whether it can be improved.

1.6 Algorithmic problem solving:

* An important 1ssue of algorithmic problem solving 1s the question of whether

or not every problem can be solved by an algorithm.

* Fortunately, a vast majority of problems in practical computing can be solved

by an algorithm.

Summary:

* An algorithm 1s a sequence of non ambiguous instructions for solving a
problem in a finite amount of time.

* An input to an algorithm specifies an instance of the problem the algorithm
solves.

* Algorithm can be specified in a natural language or a pseudocode; they can

also be implemented as computer programes.

Summary:

* Algorithm design techniques are general approaches to solving problems
algorithmically, applicable to a verity of problems from different areas of
computing.

* The same problem can often be solved by several algorithms.

* Algorithms operate on data. This makes the 1ssue of data structuring critical

for efficient algorithmic problem solving.

