
19IT103 – COMPUTATIONAL THINKING

AND PYTHON PROGRAMMING

❖ A readable, dynamic, pleasant, flexible, fast and powerful

language

1

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF CSE (IoT & CYBER SECURITY INCLUDING BLOCKCHAIN TECHNOLOGY)

Objective

Files and exception: text files, reading and writing files,

format operator; command line arguments, errors and

exceptions, handling exceptions, modules, packages;

Illustrative programs: word count, copy file, Voter’s age

validation, Marks range validation (0-100).

RECAP
A python program terminates as soon as it encounters an

unhandled error. These errors can be broadly classified

into two classes:

● Syntax errors

● Logical errors (Exceptions)

Python Exceptions Handling

Python provides two very important features to handle any unexpected

error in your Python programs and to add debugging capabilities in

them:

– Exception Handling: This would be covered in this session.

– Assertions: This would be covered in Assertions in Python.

What is Exception?

• An exception is an event, which occurs during the execution of a

program, that disrupts the normal flow of the program's

instructions.

• In general, when a Python script encounters a situation that it can't

cope with, it raises an exception. An exception is a Python object

that represents an error.

• When a Python script raises an exception, it must either handle the

exception immediately otherwise it would terminate and come out.

http://www.tutorialspoint.com/python/assertions_in_python.htm

Handling an exception:

• If you have some suspicious code that may raise an exception, you

can defend your program by placing the suspicious code in a try:

block. After the try: block, include an except: statement, followed

by a block of code which handles the problem as elegantly as

possible.

Syntax:

try:

You do your operations here;

......................

except Exception I:

If there is ExceptionI, then execute this block.

except Exception II:

If there is ExceptionII, then execute this block.

......................

else:

If there is no exception then execute this block.

Here are few important points above the above mentioned syntax:

• A single try statement can have multiple except statements. This is

useful when the try block contains statements that may throw

different types of exceptions.

• You can also provide a generic except clause, which handles any

exception.

• After the except clause(s), you can include an else-clause. The code

in the else-block executes if the code in the try: block does not raise

an exception.

• The else-block is a good place for code that does not need the try:

block's protection.

Example:

try:

fh = open("testfile", "w")

fh.write("This is my test file for exception

handling!!")

except IOError: print "Error: can\'t find file or read

data"

else: print "Written content in the file successfully"

fh.close()

• This will produce following result:

Written content in the file successfully

The except clause with no exceptions:

You can also use the except statement with no exceptions

defined as follows:

try:

You do your operations here;

......................

except:

If there is any exception, then execute this block.

......................

else:

If there is no exception then execute this block.

This kind of a try-except statement catches all the exceptions

that occur. Using this kind of try-except statement is not

considered a good programming practice, though, because it

catches all exceptions but does not make the programmer

identify the root cause of the problem that may occur.

The except clause with multiple exceptions:

You can also use the same except statement to handle multiple

exceptions as follows:

try:

You do your operations here;

......................

except(Exception1[, Exception2[,...ExceptionN]]]):

If there is any exception from the given exception

list, then execute this block

.......................

else:

If there is no exception then execute this block.

Standard Exceptions:

Here is a list standard Exceptions available in Python: Standard

Exceptions

The try-finally clause:

You can use a finally: block along with a try: block. The finally

block is a place to put any code that must execute, whether the try-

block raised an exception or not. The syntax of the try-finally

statement is this:

try:

You do your operations here;

......................

Due to any exception, this may be skipped.

finally:

This would always be executed.

......................

Note that you can provide except clause(s), or a finally clause, but

not both. You can not use else clause as well along with a finally

clause.

http://www.tutorialspoint.com/python/standard_exceptions.htm
http://www.tutorialspoint.com/python/standard_exceptions.htm

Handling Exceptions

Exceptions are handled

by special blocks

Before and After (Handling)

Before and After (Handling)

Critical block that
may cause
exception

Exception handling

Python Exception Hierarchy

Exception hierarchy

Priority Matters

Raising an exceptions:

You can raise exceptions in several ways by using the raise

statement. The general syntax for the raise statement.

Syntax:

raise [Exception [, args [, traceback]]]

• Here Exception is the type of exception (for example, NameError)

and argument is a value for the exception argument. The argument

is optional; if not supplied, the exception argument is None.

• The final argument, traceback, is also optional (and rarely used in

practice), and, if present, is the traceback object used for the

exception

Example:

def functionName(level):

if level < 1:

raise "Invalid level!", level

The code below to this would not be executed

if we raise the exception

Raising Exception (normal case)

We can manually raise the

exception using raise

keyword.

Example - Compute per day

salary for a month

Problem

Not acceptable but
● No errors (syntactically correct)
● No Exceptions (Of Course we can

divide by 34)

Solution

● Manually raising exception

User-Defined Exceptions:

• Python also allows you to create your own exceptions by deriving

classes from the standard built-in exceptions.

• Here is an example related to RuntimeError. Here a class is created

that is subclassed from RuntimeError. This is useful when you need

to display more specific information when an exception is caught.

• In the try block, the user-defined exception is raised and caught in

the except block. The variable e is used to create an instance of the

class Networkerror.

class Networkerror(RuntimeError):

def __init__(self, arg):

self.args = arg

• So once you defined above class, you can raise your exception as

follows:

try:

raise Networkerror("Bad hostname")

except Networkerror,e:

print e.args

SUMMARY
An exception is an event, which occurs during the

execution of a program, that disrupts the normal flow of

the program's instructions.

● Handling Exceptions

● Raising an exceptions

● User-Defined Exceptions

	Slide 1: 19IT103 – COMPUTATIONAL THINKING AND PYTHON PROGRAMMING
	Slide 2: Objective
	Slide 3
	Slide 4: Python Exceptions Handling
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Handling Exceptions
	Slide 12: Before and After (Handling)
	Slide 13: Before and After (Handling)
	Slide 14: Python Exception Hierarchy
	Slide 15: Exception hierarchy
	Slide 16
	Slide 17: Raising Exception (normal case)
	Slide 18: Problem
	Slide 19: Solution
	Slide 20
	Slide 21
	Slide 22

