

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

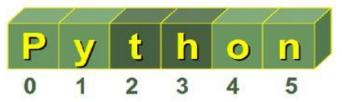
DEPARTMENT OF CSE (IoT & CYBER SECURITY INCLUDING BLOCKCHAIN TECHNOLOGY)

19IT103 – COMPUTATIONAL THINKING AND PYTHON PROGRAMMING

❖ A readable, dynamic, pleasant, flexible, fast and powerful language

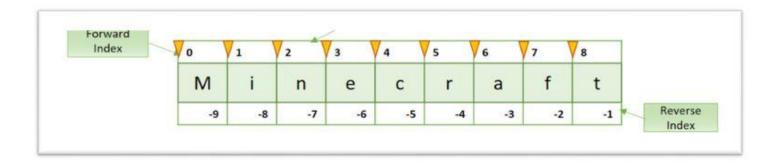
Recap

- Strings Read/Convert
- Indexing strings using []
- Looping through strings with for and while
- Concatenating strings with +
- Strings are immutable


Agenda

- Slicing Strings
- String Functions and Methods
- Sting Module
- Lists as arrays

Slicing Strings - What is it?


- Slicing means taking part of a string as in cutting it up
- It is often useful to take part of a string or analyse it or use it is another part of the code.
- Example:
 - you have been asked to write a program to check if a string contains a valid email address.
 - One of the checks will mean that you need to slice the string taking all the characters from the left hand part of the string up to the @ character

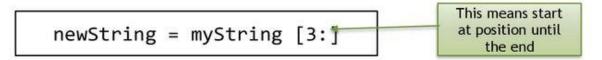
Slicing Strings -How to do it

- Strings have indices just like lists:
 - Forward index starts at 0 from the LHS
 - Reverse index starts at -1 from the RHS

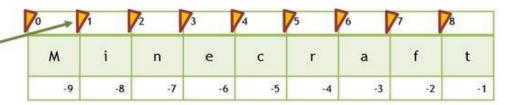
- To specify a slice you need to
 - give the START position from the left hand side
 - give the END position from the left hand side
 - Separate the two values with a colon
- Example:

```
newString = myString [1:3]
```

Slicing Strings -Some Rules



If you don't specify a START it defaults to the beginning:


newString = myString [:3]

This means start at position 0 end at position 3

If you don't specify a END it defaults to the end:

When SLICING, think of the index as pointing to the character to the left of the arrow

newString = myString [1:3]

The content of newString would be:

in

Slicing Strings - Quickstart

70	71	2	3	74	75	76	77	78
М	i	n	e	с	r	a	f	t
-9	-8	-7	-6	-5	-4	-3	-2	-1

First Character

Last Character:

All characters but the first:

Minecraf

All characters but the last:

String functions and methods

len()	min()	max()	isalnum()	isalpha()
isdigit()	islower()	isuppe()	isspace()	isidentifier()
endswith()	startswith()	find()	count()	capitalize()
title()	lower()	upper()	swapcase()	replace()
center()	ljust()	rjust()	center()	isstrip()
rstrip()	strip()			

i) Converting string functions

captitalize()	Only First character capitalized
lower()	All character converted to lowercase
upper()	All character converted to uppercase
title()	First character capitalized in each word
swapcase()	Lower case letters are converted to Uppercase and Uppercase letters are converted to Lowercase
replace(old,new)	Replaces old string with nre string

Program: str=input("Enter any string:") print("String Capitalized:", str.capitalize()) print("String lower case:", str.lower()) print("String upper case:", str.upper()) print("String title case:", str.title()) print("String swap case:", str.swapcase()) print("String replace case:", str.replace("python", "python programming"))

Output:

Enter any string: Welcome to python
String Capitalized: Welcome to python
String lower case: welcome to python
String upper case: WELCOME TO PYTHON

String title case: Welcome To Python String swap case: wELCOME TO PYTHON

String replace case: Welcome to python programming

ii)Formatting String functions

center(width)	Returns a string centered in a field of given width
ljust(width)	Returns a string left justified in a field of given width
rjust(width)	Returns a string right justified in a field of given width
format(items)	Formats a string


Program:

```
a=input("Enter any string:")
print("Center alignment:", a.center(20))
print("Left alignment:", a.ljust(20))
print("Right alignment:", a.rjust(20))
```

```
Enter any string:welcome
Center alignment: welcome
Left alignment: welcome
Right alignment: welcome
```

iii) Removing whitespace characters

lstrip()	Returns a string with leading whitespace characters removed
rstrip()	Returns a string with trailing whitespace characters removed
strip()	Returns a string with leading and trailing whitespace characters removed

Program

```
a=input("Enter any string:")
print("Left space trim:",a.lstrip())
print("Right space trim:",a.rstrip())
print("Left and right trim:",a.strip())
```

```
Enter any string: welcome
Left space trim: welcome
Right space trim: welcome
Left and right trim: welcome
```

iv) Testing String/Character

isalnum() Returns true if all characters in string are alphanumeric and atleast one character		
isalpha()	Returns true if all characters in string are alphabetic	
isdigit()	Returns true if string contains only number character	
islower() Returns true if all characters in string are lowercase letter		
Returns true if all characters in string are uppercase letter		
isspace()	Returns true if string contains only whitespace characters.	

Program

```
a=input("Enter any string:")
print("Alphanumeric:",a.isalnum())
print("Alphabetic:",a.isalpha())
print("Digits:",a.isdigit())
print("Lowecase:",a.islower())
print("Upper:",a.isupper())
Enter and
```

Output:

Enter any string:python Alphanumeric: True Alphabetic: True Digits: False

Upper: False

v) Searching for substring

Endswith()	Returns true if the strings ends with the substring
Startswith()	Returns true if the strings starts with the substring
Find()	Returns the lowest index or -1 if substring not found
Count()	Returns the number of occurrences of substring

Program

```
a=input("Enter any string:")
print("Is string ends with thon:", a.endswith("thon"))
print("Is string starts with good:", a.startswith("good"))
print("Find:", a.find("ython"))
print("Count:", a.count("o"))
```

Output:

Enter any string: welcome to python

Is string ends with thon: True Is string starts with good: False

Find: 12 Count: 3

String Modules

- String module contains a number of functions to process standard Python strings
- Mostly used string modules:

```
string.upper()
string.upper()
string.split()
string.join()
string.replace()
string.find()
string.count()
```

Example

```
import string
text="Monty Python Flying Circus"
print("Upper:", string.upper(text))
print("Lower:", string.lower(text))
print("Split:", string.split(text))
print("Join:", string.join(string.split(test),"+"))
print("Replace:", string.replace(text,"Python", "Java"))
print("Find:", string.find(text,"Python"))
print("Count", string.count(text,"n"))
```

Output

Upper: "MONTY PYTHON FLYING CIRCUS"

Lower: "monty python flying circus"

Split: ['Monty', 'Python', 'Flying', 'Circus']

Join: Monty+Python+Flying+Circus

Replace: Monty Java Flying Circus

Find: 7

Count: 3

Lists as arrays

- Both lists and arrays are used to store data in Python.
- Also these data structures allow indexing, slicing, and iterating.
- List is a built-in data structure whereas the array data structure belongs to the "mustimport" category.
- NumPy package or the array module has the array functions.

Lists as arrays

Features of Lists	Features of Arrays
List items are enclosed in square brackets	Array items are enclosed in square brackets
Lists are ordered	Arrays are ordered
Lists are mutable	Arrays are mutable
List elements do not need to be unique	Array elements do not need to be unique
Elements can be of different data types	Depends on the kind of array used
Lists need not to be declared	Arrays need to be declared
Lists are not efficient storage structure for large amount of data	Arrays can store data very compactly
Lists cannot directly handle math operations	Arrays are great for numerical operations

Array module supports unique types

Lists as arrays

Program

```
import array as arr
array_1 = arr.array("i", [3, 6, 9, 12])
print(array_1)
print(type(array_1))
```

Unicode character (b, B, u, h, H, i, I, I, L, q, Q, f or d)

List can be

converted into

arrays

```
array('i', [3, 6, 9, 12]) 
<class 'array.array'>
```

Lists as arrays

Example:

numpy supports different types

```
import numpy as np
array_2 = np.array(["numbers", 3, 6, 9, 12])
print (array_2)
print(type(array_2))
```

```
['numbers' '3' '6' '9' '12'] <class 'numpy.ndarray'>
```

Lists as arrays

Example:

```
import numpy as np
array = np.array([3, 6, 9, 12])
division = array/3
print(division)
print (type(division))

arrays can handle
math operations
directly
```

```
[1. 2. 3. 4.]
<class 'numpy.ndarray'>
```

Summary

- Slicing means taking part of a string.
- To separate the starting and ending index of the slice ":" should be used.
- String functions and methods are categorized into converting, formatting, removing white space, testing and searching functions.
- String module has additional methods to support string operations.
- List is a built-in data structure whereas the *array* data structure belongs to the "must-import" category.
- List can easily be converted into arrays.

THANKYOU