
19IT103 – COMPUTATIONAL THINKING

AND PYTHON PROGRAMMING

❖A readable, dynamic, pleasant, flexible, fast and powerful

language

1

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF CSE (IoT & CYBER SECURITY INCLUDING BLOCKCHAIN TECHNOLOGY)

UNIT II DATA TYPES, EXPRESSIONS,

STATEMENTS

• Python interpreter and interactive mode, debugging; values and types:

int, float, boolean, string , and list; variables, expressions, statements,

tuple assignment, precedence of operators, comments; Illustrative

programs: exchange the values of two variables, circulate the values of

n variables, distance between two points.

Recap

• Values and Types

• List

• Dictionary

• Tuple

• Set

Variables

• As the name implies, a variable is something which can change.

• A variable is a way of referring to a memory location used by a

computer program.

• This memory location contains values, like numbers, text or more

complicated types.

Variables

• A variable can be seen as a container (or

some say a pigeonhole) to store certain

values.

• While the program is running, variables are

accessed and sometimes changed, i.e., a

new value will be assigned to a variable.

Variables

• Putting values into the variables can be

realized with assignments.

• In most cases, the equal "=" sign is used.

• The value on the right side will be saved in

the variable name on the left side.

• Eg: x=42

y=42

Variables

• If we assign a new value to one of the variables, let's say the value 78

to y:

y = 78;

Variables

• There is no declaration of variables required in Python, which makes

it quite easy.

• Not only the value of a variable may change during program

execution, but the type as well.

• You can assign an integer value to a variable, use it as an integer for a

while and then assign a string to the same variable.

Variables

Object References

• Python variables are references to objects, but the actual data is

contained in the objects:

Object References

• x=42

• y=x

Object References

• y=78

Object References

• x refers to some

string values.

Variables

• How can we see or prove that x and y really reference the same object

after the assignment y = x of our previous example?

• Every instance (object or variable) has an identity, i.e., an integer

which is unique within the script or program, i.e., other objects have

different identities.

• The identity function id() can be used for this purpose.

Variables

Valid Variable Names

• The naming of variables follows the more general concept of an

identifier.

• A Python identifier is a name used to identify a variable, function,

class, module or other object.

• There are some certain rules to keep in mind that we must follow

while naming identifiers.

Rules for Naming Identifier

1. The Python identifier is made with a combination of lowercase or

uppercase letters, digits or an underscore.

• These are the valid characters.

• Lowercase letters (a to z)

• Uppercase letters (A to Z)

• Digits (0 to 9)

• Underscore (_)

• Example: num1, FLAG, get_user_name, userDetails, _1234

Rules for Naming Identifier

2. An identifier cannot start with a digit. If we create an identifier that

starts with a digit then we will get a syntax error.

3. We also cannot use special symbols in the identifiers name. Symbols

like (!, @, #, $, %, .) are invalid.

Rules for Naming Identifier

Rules for Naming Identifier

4. A keyword cannot be used

as an identifier.

In Python, keywords are the

reserved names that are

built-in in Python. They have

a special meaning, and we

cannot use them as identifier

names.

Rules for Naming Identifier

• If you want to see the list of all the keywords, then in your Python shell,

type “help()” and then type “keywords” to get the list of all Python

keywords.

Rules for Naming Identifier

• The length of the identifiers can be as long as you want.

• Of course, it can not be greater than the available memory, however, the

PEP-8 standards rule suggests not to exceed 79 characters in a line.

Best Practices for Python Identifiers

1. Class names should start with a capital letter and all the other identifiers

should start with a lowercase letter.

2. Begin private identifiers with an underscore (_). Note, this is not needed to

make the variable private. It is only for the ease of the programmer to easily

distinguish between private variables and public variables.

3. Use double underscores (__) around the names of magic methods and don’t

use them anywhere else. Python built-in magic methods already use this

notation. For example: __init__ , __len__ .

Best Practices for Python Identifiers

4. Always prefer using names longer than one character. index=1 is better

than i=1

5. To combine words in an identifier, you should use underscore(_). For

example: get_user_details.

6. Use camel case for naming the variables. For example: fullName,

getAddress, testModeOn, etc.

	Slide 1: 19IT103 – COMPUTATIONAL THINKING AND PYTHON PROGRAMMING
	Slide 2: UNIT II DATA TYPES, EXPRESSIONS, STATEMENTS
	Slide 3: Recap
	Slide 4: Variables
	Slide 5: Variables
	Slide 6: Variables
	Slide 7: Variables
	Slide 8: Variables
	Slide 9: Variables
	Slide 10: Object References
	Slide 11: Object References
	Slide 12: Object References
	Slide 13: Object References
	Slide 14: Variables
	Slide 15: Variables
	Slide 16: Valid Variable Names
	Slide 17: Rules for Naming Identifier
	Slide 18: Rules for Naming Identifier
	Slide 19: Rules for Naming Identifier
	Slide 20: Rules for Naming Identifier
	Slide 21: Rules for Naming Identifier
	Slide 22: Rules for Naming Identifier
	Slide 23: Best Practices for Python Identifiers
	Slide 24: Best Practices for Python Identifiers

