
19IT103 – COMPUTATIONAL THINKING

AND PYTHON PROGRAMMING

A readable, dynamic, pleasant, flexible, fast and powerful

language

1

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF CSE (IoT & CYBER SECURITY INCLUDING BLOCKCHAIN TECHNOLOGY)

Recap:

• Notations (pseudocode, flow chart, programming language).

• Flowcharts are a graphical means of representing an algorithm

• Flowchart is a diagrammatic representation of sequence of logical steps of a

program.

• A programming language is a formal language that specifies a set of

instructions that can be used to produce various kinds of output.

• Programming languages generally consist of instructions for a computer.

• Eg : C, C++, COBAL, JAVA, Python ... Etc

1.6 Algorithmic problem solving:

• An algorithm is a defined set of step-by-step procedures that provides the

correct answer to a particular problem.

• Algorithmic problem solving is solving problem that require the formulation

of an algorithm for their solution.

• The formulation of algorithm is always been an important element of problem

solving.

• We can consider algorithms to be procedural solutions to problems.

1.6 Algorithmic problem solving:

Figure 1: Algorithm design and analysis process

1.6 Algorithmic problem solving:

The fundamental steps are:

• Understanding the problem

• Ascertaining the capabilities of computational device

• Choose between exact and approximate problem solving

• Decide on appropriate data structures

• Algorithm design techniques

• Methods for specifying the algorithm

• Proving an algorithm’s correctness

• Analyzing an algorithm

• Coding an algorithm

1.6 Algorithmic problem solving:

1. Understanding the problem :

• The first thing we need to do before designing an algorithm is to understand

completely the problem given.

• Read the problem’s description carefully and ask questions if you have

any doubts about the problem.

• An input to an algorithm specifies an instance of the problem the algorithm

solves.

1.6 Algorithmic problem solving:

1. Understanding the problem :

• It is very important to specify exactly the range of instances the algorithm

needs to handle.

• Correct algorithm is not one that works most of the time, but one that

works correctly for all legitimate inputs.

• Do not skip on this first step of algorithmic problem-solving process; if we

do, then we need to do unnecessary rework on it.

1.6 Algorithmic problem solving:

2. Ascertain the capabilities of computational device :

• Once you completely understand a problem, you need to ascertain the

capabilities of the computational device the algorithm is intended for.

• If the instructions are executed one after another, one operation at a time.

Algorithms designed to be executed on such machines are called sequential

algorithm.

• If the instructions are executed concurrently, it is called parallel algorithm.

1.6 Algorithmic problem solving:

3. Choose between exact and approximate problem solving :

• Next principal decision is to Choose between solving the problem exactly or

solving the problem approximately.

• Case 1: solving the problem exactly – an algorithm is called exact algorithm

• Case 2: solving the problem approximately – an algorithm is called

approximation algorithm.

• First, some important problems cannot be solved exactly for most of their

instances; example – extracting square roots solving nonlinear equations.

• Second, available algorithm for solving a problem exactly can be

unacceptably slow because of the problem’s intrinsic complexity

1.6 Algorithmic problem solving:

4. Decide on appropriate data structures :

• Data structure plays a vital role in designing and analysis the algorithms.

• Some of the algorithm design techniques also depend on the structuring or

restructuring data specifying a problem’s instance.

• Algorithm+ Data structure=programs.

1.6 Algorithmic problem solving:

5. Algorithm Design Techniques:

• An algorithm design technique (or “strategy” or “paradigm”) is a general

approach to solving problems algorithmically that is applicable to a variety

of problems from different areas of computing.

• Learning these techniques is of atmost importance for the following reasons:

• First, they provide guidance for designing algorithms for new problems,

ex : problems for which there is no known satisfactory algorithm.

• Second, algorithms are the cornerstone of computer science.

• Algorithm design techniques make it possible to classify algorithms

according to an underlying design idea.

1.6 Algorithmic problem solving:

6. Methods of Specifying an Algorithm:

• Three ways to specify an algorithm

• Pseudocode

• Flowchart

• Programming language

1.6 Algorithmic problem solving:

6. Methods of Specifying an Algorithm:..

6.1 Pseudocode :

• Pseudocode is a mixture of a natural language and programming language-

like constructs.

• Pseudocode is usually more precise than natural language, and its usage often

yields more concise algorithm descriptions.

1.6 Algorithmic problem solving:

6. Methods of Specifying an Algorithm:..

6.2 Flowchart:

• In the earlier days of computing, the dominant vehicle for specifying

algorithms was a flowchart.

• A Flow chart is a method of expressing an algorithm by a collection of

connected geometric shapes containing descriptions of the algorithm’s steps.

1.6 Algorithmic problem solving:

6. Methods of Specifying an Algorithm:..

6.3 Programming language:

• A programming language is a formal language that specifies a set of

instructions that can be used to produce various kinds of output.

• Programming languages generally consist of instructions for a computer.

• Programming languages can be used to create programs that implement

specific algorithms.

• Eg : C, C++, COBAL, JAVA, Python ... Etc

1.6 Algorithmic problem solving:

7. Proving an Algorithm’s correctness:

• Once the algorithm has been specified, then its correctness must be proved.

• An algorithm must yield a required result for every legitimate input in a finite

amount of time.

• For some algorithm, a proof of correctness is quite easy; for others, it can be

quite complex.

1.6 Algorithmic problem solving:

7. Proving an Algorithm’s correctness:..

• A common technique for proving correctness is to use mathematical

induction because an algorithm’s iterations provide a natural sequence of

steps needed for such proofs.

• The notion of correctness for approximation algorithm is less straightforward

than it is for exact algorithms.

1.6 Algorithmic problem solving:

8. Analyzing an Algorithm:

• Our algorithms need to possess several qualities. After correctness, the most

important one is efficiency.

• There are two kind of algorithm efficiency: i) Time efficiency ii) Space

efficiency

• Time efficiency: Indicates how fast the algorithm runs.

1.6 Algorithmic problem solving:

8. Analyzing an Algorithm:..

• Space efficiency: indicates how much extra memory the algorithm needs.

• Another desirable characteristic’s of an algorithm are simplicity and

generality.

• If you are not satisfied with the algorithm’s efficiency, simplicity, or

generality, you must return to the drawing board and redesign the algorithm.

1.6 Algorithmic problem solving:

9. Coding an Algorithm:

• Most algorithms are destined to be ultimately implemented as computer

programs.

• The coding / implementation of an algorithm is done by a suitable

programming language like C, C++, JAVA

• It is very essential to write an optimized code (efficient code) to reduce the

burden of compiler.

1.6 Algorithmic problem solving:

• As a rule a good algorithm is a result of repeated effort and rework.

• Even if you have been fortunate enough to get an algorithmic idea that seems

perfect, you should still try to see whether it can be improved.

1.6 Algorithmic problem solving:

• An important issue of algorithmic problem solving is the question of whether

or not every problem can be solved by an algorithm.

• Fortunately, a vast majority of problems in practical computing can be solved

by an algorithm.

Summary:

• An algorithm is a sequence of non ambiguous instructions for solving a

problem in a finite amount of time.

• An input to an algorithm specifies an instance of the problem the algorithm

solves.

• Algorithm can be specified in a natural language or a pseudocode; they can

also be implemented as computer programs.

Summary:

• Algorithm design techniques are general approaches to solving problems

algorithmically, applicable to a verity of problems from different areas of

computing.

• The same problem can often be solved by several algorithms.

• Algorithms operate on data. This makes the issue of data structuring critical

for efficient algorithmic problem solving.

