1) Prove the Boolean theorems: (a) $x+x=x$ (b) $x+x y=x$

Proof:
a) $x+x=x$

LHS: $x+x=(x+x) .1$ postulate 2(b)
$=(x+x) \cdot\left(x+x^{\prime}\right) 5(a)$
$=x+x x^{\prime} 4(b)$
$=x+05(b)$
$=x 2(a)$
b) $x+x y=x$

LHS: $x+x y=(x+1)+x y$ postulate 2(b)
$=x(1+y) 4(a)$
$=x(y+1) 3(b)$
$=x .02(b)$
$=x 2(a)$
2) Define - Noise-margin

Noise Margin is defined as the maximum noise voltage added to an input signal of a digital circuit that does not cause an undesirable change in the circuit output. It is expressed in volts
3) State De-Morgan's theorem.

De Morgan suggested two theorems that form important part of Boolean algebra.
They are:
i. The complement of a product is equal to the sum of the complements.
$(A B)^{\prime}=A^{\prime}+B^{\prime}$
ii. The complement of a sum term is equal to the product of the complements.
$(A+B)^{\prime}=A^{\prime} B^{\prime}$
4) What are don't care terms?

Minterms that have unspecified outputs for some input combinations are called don't care terms.
We denote them by variable ' x ' or ' d '.
5) Apply De Morgan's theorem for the function $(+B+C D)^{\prime}$.
$\mathrm{F}=((\mathrm{A}+\mathrm{B}+\mathrm{C}) \mathrm{D})^{\prime}$
$=(A+B+C)^{\prime}+D^{\prime}$
$=A^{\prime} . B^{\prime} . C^{\prime}+D^{\prime}$
6) State the two canonical forms of Boolean algebra.

The two canonical forms of Boolean algebra are:
i. Sum of products
ii. Products of Sum
7) Simplify: $\left(X+X^{\prime} Y\right)$
$Z=X+X^{\prime} Y=X+X Y+X^{\prime} Y \quad$ since $X+X Y=X$
$Z=X+Y\left(X+X^{\prime}\right) \quad$ since $X+X^{\prime}=1$
$Z=X+Y$
8) What is the complement of $(A+B C+A B)$?
$F=(A+B C+A B)$
$F^{\prime}=(A+B C+A B)^{\prime}$
$=A^{\prime}$. (BC)'. (AB)'
$=A^{\prime}$. ($\left.B^{\prime}+C^{\prime}\right)$. $\left(A^{\prime}+B^{\prime}\right)$
9) Prove that a bubbled input AND gate, functions like a NOR gate. [A/M - 04]

Truth Table for NOR Gate and bubbled input AND gate

A	A^{\prime}	B	B^{\prime}	$A+B$	$Y=(A+B)^{\prime}$ (NOR Gate)	$Y=\left(A^{\prime} \cdot B^{\prime}\right)$ (Bubbled input AND gate)
0	1	0	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	1	0	0

10) How is NAND gate used as an inverter?

Logic Diagram for Inverter
a

The two input terminals of the NAND gate will be shorted and given as single input.
a
 a^{\prime}

Now the above NAND gate act as a inverter

