

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai.

UNIT -III SEMICONDUCTOR PHYSICS

TOPIC - II CARRIER CONCENTRATION OF ELECTRONS AND HOLES

Density of electrons in conduction band

Density of electrons in conduction band
$$n_e = \int_{E_c}^{\infty} Z(E) \cdot F(E) dE$$
(1)

From Fermi-Dirac statistics we can write

$$Z(E)dE = 2.\frac{n}{4} \left[\frac{8m^*}{h^2} \right]^{\frac{1}{2}} E^{\frac{1}{2}} dE \qquad (2)$$

Considering minimum energy of conduction band as E_c and the maximum energy can go upto ∞ we can write eqn (2) as

We know Fermi function,
$$F(E) = \frac{1}{1+e^{(E-E_F)/}}$$
(4)

Sub. Eqn (4) and (3) in eqn (1) we have Density of electrons is conduction band within the limits E_c to ∞

Since to move an electron from valence band to conduction band the energy required is greater than $4K_B T$. (i.e) $e^{(E-E_F)/TK_B} \gg 1 \& 1 + e^{(E-E_F)/TK_B} = e^{(E-E_F)/TK_B}$

Eqn. (5) becomes

$$n_{e} = -\frac{n}{2} \left[\frac{8m^{*}}{h^{2}} \right]^{\frac{3}{2}} \int_{E_{c}}^{\infty} (E - E_{c})^{2} \cdot e^{(E - E_{F})/TK_{B}} dE \qquad(6)$$

Let us assume that $E-E_c = xK_BT$ Differentiating we get $dE = K_BT.dx$,

Limits: when $E=E_c$; x=0, when $E=\infty$; $x=\infty$ Therefore limits are 0 to ∞

By solving Eqn (6) using this limits we can get,

Density of electrons in conduction band is
$$n_e = 2 \left[\frac{2nm^* K}{h^2} \right] \cdot e^{(E-E_F)/TK_B}$$
(7)

Density of holes in valence band

We know, F(E) represents the probability of filled state.

As the maximum probability will be 1, the probability of unfilled states will be [1-F(E)]

Example, if
$$F(E) = 0.8$$
, then 1- $F(E) = 0.2$

Let the maximum energy in valence band be E_v and the minimum energy be $-\infty$. So density of holes in valence band n_h is given by

$$n_h = \int_{-\infty}^{E_v} Z(E)$$
. [1 - F(E)]dE(8)

We know
$$Z(E)dE = \frac{n}{2} \left[\frac{8m^*_{e} \frac{3}{2}}{h^2} \right] (E - E_c)^2 dE$$
 (9)

$$1-F(E) = e^{(E-E_F)/TK_B}$$
(10)

Sub eqn (10) and (9) in (8), we get

Let us assume that E_v - $E = xK_BT$ Differentiating we get $dE = -K_BT.dx$,

Limits: when E=- ∞ ; we have E_v –(- ∞) = x Therefore x= ∞

When
$$E=E_v$$
; $x=0$,

Therefore limits are ∞ to 0

Using these limits we can solve eqn (11) and we can get the Density of holes.

Density of holes in valence band is

$$n_h = 2 \left[\frac{2nm^* K_B T 2^{\frac{3}{2}}}{m^2} \right] \cdot e^{\left(E_V - E_F \right) / TK_B}$$