

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai.

UNIT - II WAVES AND OPTICS

TOPIC - IX PROBLEMS DISCUSSION

1. Calculate the wavelength of radiation emitted by an LED made up of a semiconducting material with band gap energy 2.8ev.

Given data:

$$E_g = 2.8 \text{ eV}$$

= 2.8 x 1.602 x 10⁻¹⁹ J
 $E_g = 4.4856 \text{ x } 10^{-19} \text{J}$

Solution:

We know
$$E_g = h\gamma$$

$$\lambda = \frac{hc}{E_g}$$

$$= \frac{6.625 \times 10^{-34} \times 3 \times 10^8}{4.4856 \times 10^{-19}}$$

$$\lambda = 4430.8 \text{ A}^{\circ}$$

2. For a semiconductor laser the band gap is 0.8ev. what is the wavelength of light emitted from it.

Given data:

$$E_g = 0.8 \text{ eV} = 0.8 \text{ x } 1.6 \text{ } 10^{-19} \text{ joules}.$$

Solution:

$$\begin{split} E_g &= h \gamma \\ \lambda &= \frac{hc}{E_g} \\ &= \frac{6.625 \times 10^{-34} \times 3 \times 10^8}{0.8 \times 1.6 \times 10^{-19}} \\ &= 1.5527 \times 10^{-6} \, m \end{split}$$

The wavelength of light emitted = $1.5527 \mu m$

Calculate the numerical aperture of an optical fiber whose core and cladding are made of materials of refractive index 1.6 and 1.5 respectively.

Given data:

Refractive index of core $n_1 = 1.6$

Refractive index of cladding $n_2 = 1.5$

Solution:

Numerical aperture of an optical fiber is given by

$$NA = \sqrt{n_1^2 - n_2^2}$$

$$NA = \sqrt{(1.6)^2 - (1.5)^2}$$

$$= \sqrt{2.25 - 2.25}$$

$$= 0.55677$$

Numerical aperture of an optical fiber = 0.55677

4. Calculate the numerical aperture and the acceptance angle of an optical fiber the following data.

Given data:

Refractive index of core $n_1 = 1.55$

Refractive index of cladding $n_2 = 1.5$

Solution:

Numerical aperture

$$NA = \sqrt{n_1^2 - n_2^2}$$

$$NA = \sqrt{(1.55)^2 - (1.5)^2}$$

$$= \sqrt{0.1525}$$

$$NA = 0.3905$$
 (no unit)

Acceptance angle

$$Sin i_m = NA$$

 $i_m = sin^{-1}(NA)$
 $= sin^{-1} (0.3905)$

Acceptance angle = $22^{\circ}59^{\circ}$

5. Calculate the numerical aperature, acceptance angle, and the critical angle of a fiber having core refractive index = 1.50 and the cladding refractive index = 1.45.

Given data:

Refractive index of core $n_1 = 1.50$

Refractive index of cladding $n_2 = 1.45$

Solution

Numerical aperture

NA =
$$\sqrt{n_1^2 - n_2^2}$$

NA = $\sqrt{(1.5)^2 - (1.45)^2}$

$$NA = 0.38405$$
 (no unit)

Acceptance angle

Sin
$$i_m = NA$$

 $i_m = \sin^{-1}(NA) = \sin^{-1}(0.3905)$

Acceptance angle = $22^{\circ}35^{\circ}$

Critical Angle

Critical Angle
$$\phi_c = \sin^{-1}\left(\frac{n_1}{n_2}\right)$$

$$\phi_c = \sin^{-1}\left(\frac{1.45}{1.5}\right)$$

$$= 75.1648$$

$$\phi_c = 75^{\circ}9'$$

6. Calculate refractive indices of core and cladding materials of an optical fiber if its numerical aperture is 0.22 and refractive index differences are 0.012.

Given data

$$\Delta = 0.012$$

$$NA = 0.22$$

Solution

Numerical aperture NA =
$$n_1\sqrt{2\Delta}$$

$$n_1 = \frac{NA}{2\Delta}$$

$$= \frac{0.22}{\sqrt{2 \times 0.012}}$$

$$= \frac{0.22}{\sqrt{0.024}}$$

$$n_1 = 1.42$$

We know,
$$n_2 = n_1 (1-\Delta)$$

= 1.42(1.0.012)
= 1.42(0.988)

$$n_2 = 1.40$$

7. A signal of 100mW is injected into a fibre. The outcoming signal from the other end is 40mW. Find the loss in dB?

Given data:

Power input
$$(P_{in}) = 100 \text{mW} = 100 \text{ x } 10^{-3} \text{W}$$

Power output $(P_{out}) = 40 \text{ mW} = 40 \text{ x } 10^{-3} \text{ W}$

Solution:

Power loss (P_L) =
$$10\log \frac{P_{out}}{P_{in}}$$

= $10\log \frac{40 \times 10^{-3}}{100 \times 10^{-3}}$
P_L = $10\log (0.4)$
P_L = -3.979 dB

8. What is the ratio of the stimulated emission to spontaneous emission at temperature of 280°C for sodium D-line?

Given data:

Temperature (T) =
$$280^{\circ}$$
 C = 553 K

Solution:

$$\frac{\text{Stimulated emission}}{\text{Spontaneous emission}} = \frac{R_{21}(\text{ST})}{R_{21}(\text{SP})} = \frac{1}{\frac{hc}{e^{KT\lambda} - 1}}$$

$$= \frac{1}{\frac{(6.63 \times 10^{-34} \times 3 \times 10^{8})}{e^{(1.38 \times 10^{-23} \times 553 \times 5.890 \times 10^{-7})} - 1}}$$

$$= 6.264 \times 10^{-20}$$

 \therefore The ratio between stimulated emission & spontaneous emission = 6.264 x 10^{-20}