

SNS COLLEGE OF ENGINEERING

SIS INSTITUTIONS

(Autonomous)
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

19EC401 – MICROPROCESSORS AND MICROCONTROLLERS

8086 Addressing modes

FLAG REGISTER

- > 8086 has a 16-bit flag register
- Contains 9 active flags
- > There are two types of flags in 8086
 - Conditional flags six flags, set or reset by EU on the basis of results of some arithmetic operations
 - Control flags three flags, used to control certain operations of the processor

FLAG REGISTER

CF PF AF ZF SF OF	CARRY FLAG PARITY FLAG AUXILIARY CARRY ZERO FLAG SIGN FLAG OVERFLOW FLAG	Conditional Flags (Compatible with 8085, except OF)
TF IF	TRAP FLAG INTERRUPT FLAG	Control Flags
DF	DIRECTION FLAG	

VARIOUS ADDRESSING MODES

- 1. Immediate Addressing Mode
- 2. Register Addressing Mode
- 3. Direct Addressing Mode
- 4. Register Indirect Addressing Mode
- 5. Index Addressing Mode
- 6. Based Addressing Mode
- 7. Based & Indexed Addressing Mode
- 8. Based & Indexed with displacement Addressing Mode
- 9. Strings Addressing Mode

IMMEDIATE ADDRESSING MODE

- The instruction will specify the name of the register which holds the data to be operated by the instruction.
- Source data is within the instruction

EX: MOV AX,10ABH

REGISTER ADDRESSING MODE

 In Register addressing mode, an 8-bit or 16-bit operands are directly specified in register

• Ex:

MOV AX,BLH

DIRECT ADDRESSING MODE

Memory address is supplied with in the instruction

Mnemonic: MOV

AH,[1000]

REGISTER INDIRECT ADDRESSING MODE

- Memory address is supplied in an index or pointer register
- EX: MOV AX,[SI]

INDEXED ADDRESSING MODE

- Memory address is the sum of index register plus displacement
- MOV AX,[SI+2] ;

BASED ADDRESSING MODE

- Memory address is the sum of the BX or BP base register plus a displacement within instruction
- Ex: MOV AX,[BP+2]

BASED & INDEX ADDRESSING MODES

Memory address is the sum of the index register & base register

Ex:MOV AX,[BX+SI]

BASED & INDEXED WITH DISPLACEMENT ADDRESSING MODE

 Memory address is the sum of an index register, base register and displacement within instruction

```
MOV AX,[BX+SI+6]
JMP [BX+DI+6] ;
```


STRINGS ADDRESSING MODE

- The memory source address is a register SI in the data segment, and the memory destination address is register DI in the extra segment
- Ex: MOVSB [ES:DI] [DS:SI]

THANK YOU

