
SNS COLLEGE OF ENGINEERING
An Autonomous Institution

Coimbatore-107

19TS601-FULL STACK DEVELOPMENT

Mutation observer - Event loop: microtasks and 
macrotasks

1CS8651-Internet Programming

UNIT-1

JAVASCRIPT AND BASICS OF MERN STACK



Mutation Observer
• A built-in object that observes a DOM element,

firing a callback in case of modifications is
known as MutationObserver.

• The first step should be creating an observer
using a callback-function, like this:

– let observer = new MutationObserver(callback);

• The next step is attaching it to a DOM node, as
follows:

– observer.observe(node, config);

CS8651-Internet Programming 2



• Config is an object that has options specifying
the changes to respond to:

– childList: modifications in the direct children of
the node.

– subtree: inside all the node descendants.

– attributes: the node attributes.

– attributeFilter: an array of attribute names for
observing only the selected ones.

– characterData: to observe the node.data or not.

CS8651-Internet Programming 3



• The callback is run after any changes. The
changes are transferred to the first argument
as a list of MutationRecord objects, and the
observer becomes the second object.

• The MutationRecord object includes the
following properties:

– type: the type of mutation. It is one of
"attributes", "characterData", and "childList".

– target: that’swhere the change happens.

CS8651-Internet Programming 4



– addedNodes/removedNodes: the added or
removed nodes.

– previousSibling/nextSibling: the previous/next
sibling to added or removed nodes.

– attributeName/attributeNamespace: the changed
attribute name or namespace.

– oldValue: the previous value merely for text or
attribute changes, in case the matching option is
set attributeOldValue/characterDataOldValue.

CS8651-Internet Programming 5



• MutationObserver can respond to changes
inside DOM: added and removed elements,
text content, and attributes.

• It can be used for tracking changes
represented by other parts of the code, as
well as for integrating with third-party scripts.

• MutationObserver is capable of tracking any
changes.

CS8651-Internet Programming 6



CS8651-Internet Programming 7



CS8651-Internet Programming 8



JavaScript Event Loop: microtasks and macrotask

• A macro task is a collection of distinct and
independent tasks.

• Microtasks are minor tasks that update the
state of an application and should be
completed before the browser moves on to
other activities, such as re-rendering the user
interface.

• Promise callbacks and DOM modification
changes are examples of microtasks.

CS8651-Internet Programming 9



CS8651-Internet Programming 10



• A more detailed event loop algorithm (though
still simplified compared to the specification):

– Dequeue and run the oldest task from the
macrotask queue (e.g. “script”).

– Execute all microtasks:

• While the microtask queue is not empty:

• Dequeue and run the oldest microtask.

– Render changes if any.

– If the macrotask queue is empty, wait till a
macrotask appears.

– Go to step 1.

CS8651-Internet Programming 11



To schedule a new macrotask:

– Use zero delayed setTimeout(f).

• That may be used to split a big calculation-
heavy task into pieces, for the browser to be
able to react to user events and show progress
between them.

• Also, used in event handlers to schedule an
action after the event is fully handled
(bubbling done).

CS8651-Internet Programming 12



• To schedule a new microtask

– Use queueMicrotask(f).

– Also promise handlers go through the microtask
queue.

• There’s no UI or network event handling
between microtasks: they run immediately
one after another.

• So one may want to queueMicrotask to
execute a function asynchronously, but within
the environment state.

CS8651-Internet Programming 13



Thank You

14CS8651-Internet Programming


	Slide 1: SNS COLLEGE OF ENGINEERING An Autonomous Institution Coimbatore-107
	Slide 2: Mutation Observer
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: JavaScript Event Loop: microtasks and macrotask
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Thank You

