SNS COLLEGE OF ENGINEERING

An Autonomous Institution

Coimbatore-107

19T7S601-FULL STACK DEVELOPMENT

UNIT-1
JAVASCRIPT AND BASICS OF MERN STACK

Mutation observer - Event loop: microtasks and
macrotasks

CS8651-Internet Programming 1

Mutation Observer 28

* A built-in object that observes a DOM element,
firing a callback in case of modifications is
known as MutationObserver.

 The first step should be creating an observer
using a callback-function, like this:

— |let observer = new MutationObserver(callback);

* The next step is attaching it to a DOM node, as
follows:

— observer.observe(node, config);

S -
> Tl
INS TIGIONS,

* Config is an object that has options specifying
the changes to respond to:

— childList: modifications in the direct children of
the node.

— subtree: inside all the node descendants.
— attributes: the node attributes.

— attributeFilter: an array of attribute names for
observing only the selected ones.

— characterData: to observe the node.data or not.

O -
D '
INSTITILONS

* The callback is run after any changes. The
changes are transferred to the first argument
as a list of MutationRecord objects, and the
observer becomes the second object.

* The MutationRecord object includes the
following properties:

— type: the type of mutation. It is one of
"attributes”, "characterData", and "childList".

— target: that’s where the change happens.

O -
D '
INSTITILONS

— addedNodes/removedNodes: the added or
removed nodes.

— previousSibling/nextSibling: the previous/next
sibling to added or removed nodes.

— attributeName/attributeNamespace: the changed
attribute name or namespace.

— oldValue: the previous value merely for text or
attribute changes, in case the matching option is
set attributeOldValue/characterDataOldValue.

O -
D '
INS TITITITNE

* MutationObserver can respond to changes
inside DOM: added and removed elements,
text content, and attributes.

* |t can be wused for tracking changes
represented by other parts of the code, as
well as for integrating with third-party scripts.

 MutationObserver is capable of tracking any
changes.

<html>
<body>
<div contentEditable id="elemld">Click and edit...</div>
<script>
let observer = new MutationObserver(mutationRecords => {
alert(mutationRecords); // alert(the changes)
b
// observe everything except attributes
observer.observe(eleml|d, {
childList: true, // observe direct children
subtree: true, // lower descendants too
characterDataOldValue: true, // pass old data to callback
};
</script>
</body>
</html>

CS8651-Internet Programming

Click and edit...

[Click jand edit...]

www.w3docs.com says

[object MutationRecord],[object MutationRecord],[object
MutationRecord]

CS8651-Internet Programming 8

. JavaScript Event Loop: microtasks and macrotasl=""

e A macro task is a collection of distinct and
independent tasks.

* Microtasks are minor tasks that update the
state of an application and should be
completed before the browser moves on to
other activities, such as re-rendering the user
interface.

* Promise callbacks and DOM modification
changes are examples of microtasks.

-

script

-)
ti microtasks

event :;;Z render
IOOP mousemove
t:; microtasks
:;i render
setTimeout

—/

CS8651-Internet Programming 10

S o
- 2;— }
INS TGN,

* A more detailed event loop algorithm (though
still simplified compared to the specification):

— Dequeue and run the oldest task from the
macrotask queue (e.g. “script”).

— Execute all microtasks:
* While the microtask queue is not empty:
* Dequeue and run the oldest microtask.

— Render changes if any.

— If the macrotask queue is empty, wait till a
macrotask appears.

— Go to step 1.

O

To schedule a new macrotask:
— Use zero delayed setTimeout(f).

* That may be used to split a big calculation-
heavy task into pieces, for the browser to be
able to react to user events and show progress
between them.

 Also, used in event handlers to schedule an

action after the event is fully handled
(bubbling done).

O

* To schedule a new microtask
— Use queueMicrotask(f).
— Also promise handlers go through the microtask
queue.
* There’'s no Ul or network event handling
between microtasks: they run immediately
one after another.

* So one may want to queueMicrotask to
execute a function asynchronously, but within
the environment state.

Thank You

CS8651-Internet Programming

14

	Slide 1: SNS COLLEGE OF ENGINEERING An Autonomous Institution Coimbatore-107
	Slide 2: Mutation Observer
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: JavaScript Event Loop: microtasks and macrotask
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Thank You

