
SNS COLLEGE OF ENGINEERING
An Autonomous Institution

Coimbatore-107

19TS601-FULL STACK DEVELOPMENT

UI Events -Forms, controls

1CS8651-Internet Programming

UNIT-1

JAVASCRIPT AND BASICS OF MERN STACK

UI Events-Mouse Events
• Mouse events belong to the most common

and significant event types.

• Mouse event object can be defined as a unity
of events that happen when the mouse
interacts with the HTML document.

• The Types of Mouse Events

– Simple

– Complex

CS8651-Internet Programming 2

UI Events-Mouse Events
Simple events

• mousedown/mouseup: the mouse button is clicked or
released over an element.

• mouseover/mouseout: the pointer of the mouse
comes over or out of an element.

• mousemove: each move of the mouse triggers the
event.

• contextmenu: it triggers when an attempt of opening a
context menu is detected. Commonly, it happens when
the user presses the right button of the
mouse.However, there are other means of opening the
context menu (for instance, using a specific keyboard
key but it doesn’t belong to mouse events).

CS8651-Internet Programming 3

UI Events-Mouse Events
• Complex events

• The complex events are the following:

• click: it is activated after mousedown and then
mouseup over the same element when the
left button of the mouse is used.

• dblclick: it triggers when a double click over an
element is performed.

• The basis of the complex events are simple
ones.

CS8651-Internet Programming 4

UI Events-Event order
• Multiple events can be triggered by an action.

For example, an initial click triggers
mousedown at the moment the button is
pressed. Afterward, comes the mouseup and
click when it is released.

• In the cases when multiple events are initiated
by a single action, their order is fixed. It means
that the handlers are called in the following
sequence: mousedown → mouseup → click .

CS8651-Internet Programming 5

Getting the button: which
• The click-related events always contain the

which property, allowing to get a particular
mouse button. You needn’t use it for the
events related to click and contextmenu .

• But, in the event of tracking mousedown and
mouseup ,it will be necessary. The reason is
that such events trigger on any button. So,
which will allow distinguishing between
“right-mousedown” and “left-mousedown” .

CS8651-Internet Programming 6

Getting the button: which
• The possible three values are as follows:

– The left button - event.which == 1 .

– The middle button- event.which == 2 .

– The right button - event.which == 3 .

• However, the middle button is rarely used.

CS8651-Internet Programming 7

Modifiers: shift, alt, ctrl and meta
• All the mouse events have information about

pressed modifier keys.

• The properties of the events are:
– shiftKey: Shift

– altKey: Alt (or Opt for Mac)

– ctrlKey: Ctrl

– metaKey:for Mac - Cmd

• When the matching key is pressed during the
event, the properties above are true.

• Let’s take an example, where the button works on
Ctrl+Shift+click:

CS8651-Internet Programming 8

CS8651-Internet Programming 9

CS8651-Internet Programming 10

• consider that for Mac, Cmd is used instead of
Ctrl.On Mac, there is another Cmd that
corresponds to the property metaKey.

• So, in places where Windows user presses
Ctrl+Enter or Ctrl+A, a user of MAC should
press Cmd+Enter or Cmd+A.

• So, anytime it is necessary to support
combinations, such as Ctrl+click, for MAC it
makes sense using Cmd+click.

CS8651-Internet Programming 11

Coordinates: clientX/Y, pageX/Y
• The overall mouse events have coordinates in the

following two flavours:
– clientX and clientY that are window-relative.

– pageX and pageY that are document-relative.

• Let’s say you have a window with the size
500x500.

• The mouse is in the left-upper corner. In this case,
clientX and clientY are equal to 0.

• When the mouse is in the center, clientX and
clientY are equal to 250, no matter how far the
document has been scrolled. It is like
position:fixed .

CS8651-Internet Programming 12

• The document related coordinates, such as
pageX , pageY should be counted from the
left-upper corner of the document.

• Other examples include “Disabling selection”
and “prevent copying”

CS8651-Internet Programming 13

Keyboard Event-keydown and keyup
• A keyboard event is generated by pressing a

key: no matter it’s a symbol key or a special
key, such as Shift, Ctrl, and more.

• Other ways of inputting on modern devices.
For instance, speech recognition or
copy/paste using the mouse.

CS8651-Internet Programming 14

• The keydown and keyup events occur
whenever the user presses a key.

• The keydown happens at the moment the
user presses the key down.

• It repeats as long as the user keeps it down.

• The keyup event happens when the user
releases the key after the default action has
been performed.

CS8651-Internet Programming 15

Key board event-Event.code and Event.key

• The key property of the event object allows
getting the character, while the code property
- the “physical key code”.

• For instance, the same “S” can be pressed
both with the Shift button or without. It will
give different characters: lowercase z and
uppercase Z.

• The event.key is the character itself: hence, it
will be different.

CS8651-Internet Programming 16

• In case the user works with different
languages, then switching to another language
will bring a completely different character
instead of “S”.

• It will be the value of the event.key, while
event.code is constantly the same.

CS8651-Internet Programming 17

CS8651-Internet Programming 18

Key board event:Auto-repeat
• When any key is being pressed for a long

enough time, it gets “auto-repeating”.

• The keydown event happens again and again,
and when it is released, the keyup is got.

• So, it is typical to have many keydowns and
only one keyup.

• For events that happen by auto-repeat, the
event.repeat property is set to true.

CS8651-Internet Programming 19

Key board event:Default Actions
• There can be different default actions. It’s

because many possible things can be initiated
by the keyboard, as described below:

– A character comes out on the screen.

– A character is deleted with the Delete key.

– The scrolling of the page with the PageDown key.

– Opening of the “Save Page” dialog by Ctrl+S.

CS8651-Internet Programming 20

• If you prevent the default action on keydown,
it may cancel most of them, except for the OS-
based specific keys.

• For instance, Alt+F4 closes the current
browser window on Windows. And, in
JavaScript, no way exists to stop it by
preventing the default action.

CS8651-Internet Programming 21

• Let’s check out an example where the <input>
expects a phone number, not accepting keys
except digits, such as +, - or ():

CS8651-Internet Programming 22

CS8651-Internet Programming 23

Also, take into account that special keys, like
Backspace, Left, Right, Ctrl+V will not work in
such an output. That is the side-effect of the
checkedPhoneKey strict filter.

Key board event: Legacy
• Previously, there was a keypress event, along

with keyCode, charCode, which properties of
the event object.

• Anyway, they caused so many
incompatibilities that developers started
deprecating all of them and making new,
modern events (described above). Of course,
the old code still works but there is no use in
them.

CS8651-Internet Programming 24

Summary
• The primary keyboard event properties are

the following:

– code: it is the key code (for example, "KeyA"),
specific to the key location on the keyboard.

– key: the character ("A", "a") for non-character
keys. Normally, its value is equivalent to the value
of the code.

CS8651-Internet Programming 25

Forms, controls :JavaScript Form Properties and Methods

• The method property is targeted at setting or
returning the value of the method attribute in
a form.

• The method attribute indicates the way of
sending form-data. The latter is sent to the
page, specified in the action attribute.

CS8651-Internet Programming 26

Navigation: Form and Elements
• Document forms are the components of the

specific collection, known as document.forms. It
is a so-called “named collection”, both named
and ordered. For getting the form both the name
and the number can be used, like here:
– document.forms.myForm - the form with

name="myForm"

– document.forms[0] - it's the first form in the
document

• While having a form, any element is available in
the named collection form.elements, like in this
example:

CS8651-Internet Programming 27

CS8651-Internet Programming 28

CS8651-Internet Programming 29

• Multiple elements can exist with the same
name:

• for example, the case with radio buttons. In
such a case, form.elements[name] is a
collection, for example:

CS8651-Internet Programming 30

CS8651-Internet Programming 31

CS8651-Internet Programming 32

• The navigation properties don't rely upon the
tag structure.

• All the control elements are available inside
form.elements.

CS8651-Internet Programming 33

Form,Controls: Fieldsets as “Subforms”
• A form can contain one or many <fieldset>

elements.

• Also, they have elements property, which is
controlled by the lists form inside them. Here
is an example:

CS8651-Internet Programming 34

CS8651-Internet Programming 35

CS8651-Internet Programming 36

Backreference: element.form
• The form is available as element.form for any

element. So, elements reference the form and
the form references all elements, as
demonstrated in the picture below:

• And, here is an example:

CS8651-Internet Programming 37

CS8651-Internet Programming 38

Form Elements
• input and text area

– Their value can be accessed as input.value (string) or
input.checked (boolean) for checkboxes, as shown in
the example below:

– input.value = "The Value";
– textarea.value = "The text"
– input.checked = true; // checkbox or radio button

• Also, take into consideration that although
<textarea>...</textarea> keeps its value as nested
HTML, textarea.innerHTML should never be used
for accessing it.

• It includes only the HTML that was initially on the
page and not the current value.

CS8651-Internet Programming 39

• select and option

• A <select> element has three significant
properties:

– The group of <option> subelements is known as
select.options.

– The value of the currently selected <option> is
select.value.

– The number of the currently selected <option> .

CS8651-Internet Programming 40

• Accordingly, they offer three different ways of
setting a value for the <select>:
– Finding the matching <option> element and set

option.selected to true.

– Setting select.value to the value.

– Setting select.selectedIndex to the number of the
option.

• The 2nd and the 3rd ways are more
convenient, but the first is the most obvious
one.

• Here is an example:

CS8651-Internet Programming 41

CS8651-Internet Programming 42

• In contrast to most other controls, <select>
helps to control multiple options
simultaneously, if it has the attribute multiple.
However, this feature is rarely used. Hence,
you can use the first way that is add/remove
the selected property <option> from
subelements.

• In the example, we demonstrate how to get
their collection as select.options:

CS8651-Internet Programming 43

CS8651-Internet Programming 44

CS8651-Internet Programming 45

• new option

• This element is also used rarely on its own.
But in its specification there is a pretty short
syntax for creating <option> elements, like
this:

• let option = new Option(text, value,
defaultSelected, selected);

CS8651-Internet Programming 46

• The parameters are the following:

– text is the text within the option,

– value is the value of the option,

– defaultSelected – if it's true, then selected HTML-
attribute is generated,

– selected – if it's true, then the option is picked
out.

CS8651-Internet Programming 47

• Sometimes there is a confusion over
defaultSelected and selected. The difference
between them is the following: defaultSelecte
specifies the HTML-attribute, which you can
get using option.getAttribute('selected'), and
the selected sets whether the is selected or
not. It is more important. In principle, both
values can be set to true or false. For example:

CS8651-Internet Programming 48

• let option = new Option('text', 'value');

• // creates <option value="value"> text </option>

• In the example below, the same element is
selected:

• let option = new Option('text', 'value', true, true);

• Option elements include the following
properties:
– option.selected - the option is selected.

– option.index - the number of the option amid the
others in its kbd class="highlighted"><select>.

– option.text -the option’s text content.

CS8651-Internet Programming 49

JavaScript Focusing: focus/blur
• The FocusEvent Object handles events that

occur when elements gets or loses focus.

CS8651-Internet Programming 50

CS8651-Internet Programming 51

Events:focus/blur
• On focusing, the focus event is called, and

when the element loses the focus, the blur
event is called.

• To be more accurate, let’s apply them for
validation of an input field.

– The blur handler checks if the email is entered. If
it’s not entered- an error occurs.

– The focus handler hides the error message:

CS8651-Internet Programming 52

CS8651-Internet Programming 53

CS8651-Internet Programming 54

CS8651-Internet Programming 55

• Modern HTML is capable of doing much
validation, applying input attributes: required,
pattern, and more.

• JavaScript may be used for getting more
flexibility. Also, the changed value can be sent
to the server, in case it’s correct.

CS8651-Internet Programming 56

Methods focus/blur
• The elem.focus() and elem.blur() methods are

used for setting/unsetting the focus on the
element.

• Let’s make the user unable to leave the input,
if the value is invalid, like this:

CS8651-Internet Programming 57

CS8651-Internet Programming 58

CS8651-Internet Programming 59

CS8651-Internet Programming 60

• If you enter something into the input and then
try to apply Tab or click away from the
<input>, and then onblur brings the focus
back.

• Another important note: it’s not possible to
prevent losing focus by calling
event.preventDefault() in onblur, as the latter
works the element lost the focus. A focus loss
can happen for different reasons.

CS8651-Internet Programming 61

• One of the reasons is when the user clicks
somewhere else. But, JavaScript itself can lead
to it, for example:

• An alert moves the focus to itself, causing the
focus loss at the element (it’s a blur event).
When the alert is discarded, the focus returns
(focus event).

• In case an element is removed from DOM, it
may also cause a focus loss. But, if it is
reinserted later, the focus won’t return.

CS8651-Internet Programming 62

• The features above sometimes cause
focus/blur handlers to misbehave: they trigger
when it’s not necessary.

• The best solution is to be careful while using
those events.

CS8651-Internet Programming 63

Allow Focusing on any Element: tabindex

• Focusing is not supported by many elements by
default.

• The list can vary a little between browsers, but a
thing is constantly correct: focus/blur support is
guaranteed for elements that a user can interact
with: <input>, <button>, <a>, and more.

• On the other hand, elements that exist for
formatting something, such as , <div>,
<table> - are non focusable by default. The
elem.focus() method doesn’t operate on them,
and focus/blur events never trigger.

CS8651-Internet Programming 64

• That situation can be changed with HTML-attribute
tabindex.

• When an element has tabindex, it becomes non
focusable. The attribute value is the order number of
the element when Tab is applied for switching between
them. In other words: if there are two elements and
the first hastabindex="1", the second- tabindex="2",
using Tab while in the first one, moves the focus into
the second.

• The switch order is as follows: elements with tabindex
from 1 and above go first and only then go the
elements without. Elements that have matching
tabindex are switched in the document source order.

CS8651-Internet Programming 65

• Two special values exist:
• tabindex="0" that places an element amid the

ones without tabindex. In other words, when you
switch elements, the ones with tabindex=0 go
after those with tabindex ≥ 1.

• As a rule, it is used for making an element
focusable, keeping the default switching order.

• tabindex="-1" is used only for programmatic
focusing on an element. The Tab key ignores
elements like that, but the elem.focus() method
works.

• Let’s take a look at the example below:

CS8651-Internet Programming 66

CS8651-Internet Programming 67

CS8651-Internet Programming 68

• Also, you can add tabindex from JavaScript by
applying the elem.tabIndex property. The
effect will be the same.

CS8651-Internet Programming 69

Delegation: focusin/focusout
• The focus and blur events don’t bubble.

• For example, it is not possible to put onfocus
on the <form> to highlight it, as follows:

CS8651-Internet Programming 70

CS8651-Internet Programming 71

• The reason that the code above doesn’t work is
that when the user focuses on the <input>, the
focus event triggers on that input only. As it
doesn’t bubble up, the form.onfocus doesn’t
trigger either.

• In such a case, we can suggest two solutions.

• Within the first solution, focus/blur don’t bubble
up but propagate down on the capturing phase.
Hence, this is a working example:

CS8651-Internet Programming 72

• Focusin/focusout: This type of event can
bubble.

CS8651-Internet Programming 73

CS8651-Internet Programming 74

CS8651-Internet Programming 75

Focusing:focus/blur-Summary
• The focus and blur events are a crucial part of any

programming activity.
• The focus event triggers on focusing, while the

blur event happens when the focus is lost.
• They have several specific features that are

described below:
– They never bubble. But, instead, you can use

focusin/focusout that can bubble.
– By default, the focus is not supported by most

elements. The good thing is that you can use tabindex
for making anything focusable.

• And, finally, the currently focused element may
be available in document.activeElement.

CS8651-Internet Programming 76

Forms,controls-Events:change,input,cut,copy,paste

• the change event: it generally occurs on the
focus loss for text input. So, this event triggers
when a value was changed.

• the input event: it occurs for text inputs on
every change. Unlike the change event, it
triggers immediately.

• the cut/copy/paste events: these events occur
while cutting/copying/pasting a value. Their
actions can’t be prevented. The property
event.clipboardData allows reading/writing
access to the clipboard.

CS8651-Internet Programming 77

Forms: event and method submit
• The submit event triggers when the form is

already submitted.

• Normally, developers use it to validate the
form before sending it to the server or to
cancel the submission and process it in
JavaScript.

• The method form.submit() is useful for
launching the form to send from JavaScript.

• It can be efficiently used to create and send
own forms to the server.

CS8651-Internet Programming 78

Thank You

79CS8651-Internet Programming

	Slide 1: SNS COLLEGE OF ENGINEERING An Autonomous Institution Coimbatore-107
	Slide 2: UI Events-Mouse Events
	Slide 3: UI Events-Mouse Events
	Slide 4: UI Events-Mouse Events
	Slide 5: UI Events-Event order
	Slide 6: Getting the button: which
	Slide 7: Getting the button: which
	Slide 8: Modifiers: shift, alt, ctrl and meta
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Coordinates: clientX/Y, pageX/Y
	Slide 13
	Slide 14: Keyboard Event-keydown and keyup
	Slide 15
	Slide 16: Key board event-Event.code and Event.key
	Slide 17
	Slide 18
	Slide 19: Key board event:Auto-repeat
	Slide 20: Key board event:Default Actions
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Key board event: Legacy
	Slide 25: Summary
	Slide 26: Forms, controls :JavaScript Form Properties and Methods
	Slide 27: Navigation: Form and Elements
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Form,Controls: Fieldsets as “Subforms”
	Slide 35
	Slide 36
	Slide 37: Backreference: element.form
	Slide 38
	Slide 39: Form Elements
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: JavaScript Focusing: focus/blur
	Slide 51
	Slide 52: Events:focus/blur
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Methods focus/blur
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Allow Focusing on any Element: tabindex
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: Delegation: focusin/focusout
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: Focusing:focus/blur-Summary
	Slide 77: Forms,controls-Events:change,input,cut,copy,paste
	Slide 78: Forms: event and method submit
	Slide 79: Thank You

