
SNS COLLEGE OF ENGINEERING
An Autonomous Institution

Coimbatore-107

CS8651-INTERNET PROGRAMMING

Objects - Generators, advanced iteration

1CS8651-Internet Programming

UNIT-1
JAVASCRIPT AND BASICS OF MERN STACK



Objects

• A javaScript object is an entity having state
and behavior (properties and method).

• For example: car, pen, bike, chair, glass,
keyboard, monitor etc.

• JavaScript is an object-based language.
Everything is an object in JavaScript.

• JavaScript is template based not class based.
Here, we don't create class to get the object.
But, we direct create objects.

CS8651-Internet Programming 2



CS8651-Internet Programming 3



Creating Objects in JavaScript

• There are 3 ways to create objects.

• By object literal

• By creating instance of Object directly (using 
new keyword)

• By using an object constructor (using new 
keyword)

CS8651-Internet Programming 4



1) JavaScript Object by object literal
• The syntax of creating object using object literal is 

given below:

• var person = {firstName:"John", lastName:"Doe", 
age:50, eyeColor:"blue"};

or

• var person = {
firstName: "John",
lastName: "Doe",
age: 50,
eyeColor: "blue"

};

CS8651-Internet Programming 5



Object Properties
• The name:values pairs in JavaScript objects 

are called properties

CS8651-Internet Programming 6



2) By creating instance of Object
• The syntax of creating object directly is given 

below:

• var objectname=new Object();

• Here, new keyword is used to create object.

CS8651-Internet Programming 7



• var person = new Object();
person.firstName = "John";
person.lastName = "Doe";
person.age = 50;
person.eyeColor = "blue";

CS8651-Internet Programming 8



3) By using an Object constructor

• Here, you need to create function with
arguments. Each argument value can be
assigned in the current object by using this
keyword.

• The this keyword refers to the current object.

•

CS8651-Internet Programming 9



CS8651-Internet Programming 10



What is Generator?

• A generator-function is defined like a normal
function, but whenever it needs to generate a
value, it does so with the yield keyword rather
than return.

• The yield statement suspends the function’s
execution and sends a value back to the caller,
but retains enough state to enable the
function to resume where it is left off.

• When resumed, the function continues
execution immediately after the last yield run.

CS8651-Internet Programming 11



What is Generator?

// An example of generator function

function* gen(){

yield 1;

yield 2;

...

...

}

CS8651-Internet Programming 12



Example
function* generate()

{

console.log('invoked 1st time');

yield 1;

console.log('invoked 2nd time');

yield 2;

}

// Code to invoke generator()

let gen = generate();

CS8651-Internet Programming 13



• Let’s examine the generate() function in detail.

• First, you see the asterisk (*) after the
function keyword. The asterisk denotes that
the generate() is a generator, not a normal
function.

• Second, the yield statement returns a value
and pauses the execution of the function.

CS8651-Internet Programming 14



function* forever() 
{

let index = 0;
while (true) 

{
yield index++;

}
}
let f = forever();
console.log(f.next()); // 0
console.log(f.next()); // 1
console.log(f.next()); // 2

CS8651-Internet Programming 15



CS8651-Internet Programming 16

OUTPUT

• { value: 0, done: false }

• { value: 1, done: false }

• { value: 2, done: false }

value: It is the yielded value.

done: It is a Boolean value which gives true if
the function code has finished. Otherwise, it
gives false.



JavaScript Iterators and Iterables

• JavaScript Iterator is an object or pattern that
allows us to traverse over a list or collection.

• Iterators define the sequences and implement
the iterator protocol that returns an object by
using a next() method that contains the value
and is done.

• The value contains the next value of the
iterator sequence and the done is the boolean
value true or false if the last value of the
sequence has been consumed then it’s true
else false.

CS8651-Internet Programming 17



• JavaScript provides a protocol to iterate over
data structures. This protocol defines how
these data structures are iterated over using
the for...of loop.

• The concept of the protocol can be split into:

– iterable

– iterator

• The iterable protocol mentions that an
iterable should have the Symbol.iterator key.

CS8651-Internet Programming 18



• JavaScript provides a protocol to iterate over
data structures. This protocol defines how
these data structures are iterated over using
the for...of loop.

• The concept of the protocol can be split into:

– iterable

– iterator

• The iterable protocol mentions that an
iterable should have the Symbol.iterator key.

CS8651-Internet Programming 19



JavaScript Iterables
• The data structures that have the

Symbol.iterator() method are called iterables.
For example, Arrays, Strings, Sets, etc.

const dept = "CSE DEPARTMENT";

for (let n of dept[Symbol.iterator]())

{

console.log(n);

}

O/P: CSE DEPARTMENT

CS8651-Internet Programming 20



JavaScript Iterators
• An iterator is an object that is returned by the

Symbol.iterator() method.

• The iterator protocol provides the next()
method to access each element of the iterable
(data structure) one at a time.

• The iterator protocol defines how to produce
a sequence of values from an object.

• An object becomes an iterator when it
implements a next() method.

CS8651-Internet Programming 21



Example
const arr = ['h', 'e', 'l', 'l', 'o'];

let arrIterator = arr[Symbol.iterator]();

console.log(arrIterator.next()); // {value: "h", done: false}

console.log(arrIterator.next()); // {value: "e", done: false}

console.log(arrIterator.next()); // {value: "l", done: false}

console.log(arrIterator.next()); // {value: "l", done: false}

console.log(arrIterator.next()); // {value: "o", done: false}

console.log(arrIterator.next()); // {value: undefined, done:
true}

CS8651-Internet Programming 22



Thank You

23CS8651-Internet Programming


	Slide 1: SNS COLLEGE OF ENGINEERING An Autonomous Institution Coimbatore-107
	Slide 2: Objects
	Slide 3
	Slide 4: Creating Objects in JavaScript
	Slide 5: 1) JavaScript Object by object literal
	Slide 6: Object Properties
	Slide 7: 2) By creating instance of Object
	Slide 8
	Slide 9: 3) By using an Object constructor
	Slide 10
	Slide 11: What is Generator?
	Slide 12: What is Generator?
	Slide 13: Example
	Slide 14
	Slide 15
	Slide 16
	Slide 17: JavaScript Iterators and Iterables
	Slide 18
	Slide 19
	Slide 20: JavaScript Iterables
	Slide 21: JavaScript Iterators
	Slide 22: Example
	Slide 23: Thank You

