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Objects

• A javaScript object is an entity having state
and behavior (properties and method).

• For example: car, pen, bike, chair, glass,
keyboard, monitor etc.

• JavaScript is an object-based language.
Everything is an object in JavaScript.

• JavaScript is template based not class based.
Here, we don't create class to get the object.
But, we direct create objects.
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Creating Objects in JavaScript

• There are 3 ways to create objects.

• By object literal

• By creating instance of Object directly (using 
new keyword)

• By using an object constructor (using new 
keyword)
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1) JavaScript Object by object literal
• The syntax of creating object using object literal is 

given below:

• var person = {firstName:"John", lastName:"Doe", 
age:50, eyeColor:"blue"};

or

• var person = {
firstName: "John",
lastName: "Doe",
age: 50,
eyeColor: "blue"

};

CS8651-Internet Programming 5



Object Properties
• The name:values pairs in JavaScript objects 

are called properties
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2) By creating instance of Object
• The syntax of creating object directly is given 

below:

• var objectname=new Object();

• Here, new keyword is used to create object.
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• var person = new Object();
person.firstName = "John";
person.lastName = "Doe";
person.age = 50;
person.eyeColor = "blue";
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3) By using an Object constructor

• Here, you need to create function with
arguments. Each argument value can be
assigned in the current object by using this
keyword.

• The this keyword refers to the current object.

•
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What is Generator?

• A generator-function is defined like a normal
function, but whenever it needs to generate a
value, it does so with the yield keyword rather
than return.

• The yield statement suspends the function’s
execution and sends a value back to the caller,
but retains enough state to enable the
function to resume where it is left off.

• When resumed, the function continues
execution immediately after the last yield run.

CS8651-Internet Programming 11



What is Generator?

// An example of generator function

function* gen(){

yield 1;

yield 2;

...

...

}
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Example
function* generate()

{

console.log('invoked 1st time');

yield 1;

console.log('invoked 2nd time');

yield 2;

}

// Code to invoke generator()

let gen = generate();
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• Let’s examine the generate() function in detail.

• First, you see the asterisk (*) after the
function keyword. The asterisk denotes that
the generate() is a generator, not a normal
function.

• Second, the yield statement returns a value
and pauses the execution of the function.
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function* forever() 
{

let index = 0;
while (true) 

{
yield index++;

}
}
let f = forever();
console.log(f.next()); // 0
console.log(f.next()); // 1
console.log(f.next()); // 2
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OUTPUT

• { value: 0, done: false }

• { value: 1, done: false }

• { value: 2, done: false }

value: It is the yielded value.

done: It is a Boolean value which gives true if
the function code has finished. Otherwise, it
gives false.



JavaScript Iterators and Iterables

• JavaScript Iterator is an object or pattern that
allows us to traverse over a list or collection.

• Iterators define the sequences and implement
the iterator protocol that returns an object by
using a next() method that contains the value
and is done.

• The value contains the next value of the
iterator sequence and the done is the boolean
value true or false if the last value of the
sequence has been consumed then it’s true
else false.
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• JavaScript provides a protocol to iterate over
data structures. This protocol defines how
these data structures are iterated over using
the for...of loop.

• The concept of the protocol can be split into:

– iterable

– iterator

• The iterable protocol mentions that an
iterable should have the Symbol.iterator key.
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JavaScript Iterables
• The data structures that have the

Symbol.iterator() method are called iterables.
For example, Arrays, Strings, Sets, etc.

const dept = "CSE DEPARTMENT";

for (let n of dept[Symbol.iterator]())

{

console.log(n);

}

O/P: CSE DEPARTMENT
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JavaScript Iterators
• An iterator is an object that is returned by the

Symbol.iterator() method.

• The iterator protocol provides the next()
method to access each element of the iterable
(data structure) one at a time.

• The iterator protocol defines how to produce
a sequence of values from an object.

• An object becomes an iterator when it
implements a next() method.
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Example
const arr = ['h', 'e', 'l', 'l', 'o'];

let arrIterator = arr[Symbol.iterator]();

console.log(arrIterator.next()); // {value: "h", done: false}

console.log(arrIterator.next()); // {value: "e", done: false}

console.log(arrIterator.next()); // {value: "l", done: false}

console.log(arrIterator.next()); // {value: "l", done: false}

console.log(arrIterator.next()); // {value: "o", done: false}

console.log(arrIterator.next()); // {value: undefined, done:
true}
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Thank You
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