

STANDARDS OF MEASUREMENT

Statistical Analysis of Measurement Data

CONTENT-CLASS-8

Review Answers for worksheet-7		Standards of measurement		Video Show- Tanjore Temple Secrets Part-2	
Activity		Class work Problem		M&I Star of the week contest	
Summary		Worksheet-8			

>A standard is a physical representation of a

A standard is a physical representation of a <u>unit of measurement</u>.

A <u>known accurate measure</u> of physical quantity is termed as standard.

These standards are used to determine the values of other physical quantities by <u>comparison methods</u>.

Fundamental unit of length in SI system is <u>metre</u>

Can you define 1 metre?

- Defined as the distance between two lines engraved on gold plugs near the ends of a platinum-iridium alloy at zero degree Celsius and mechanically supported in a prescribed manner

meter, (SI <u>unit</u> symbol: m), is the <u>fundamental unit</u> of length in the <u>International System of Units</u> (SI).

Originally intended to be one ten-millionth of the distance from the Earth's equator to the North Pole (at sea level).

Since 1983, it has been defined as "the length of the path travelled by light in vacuum during a time interval of 1/299,792,458 of a second."

National Prototype Metre Bar (alloy of ninety percent<u>platinum</u> and ten percent <u>iridium</u>) in <u>International Bureau of Weights and</u> <u>Measures</u> (BIPM: *Bureau International des Poids et Mesures*) to be located in <u>Sèvres</u>, France.

kilogramme (kg), is the <u>base</u> unit of <u>mass</u> in the <u>International System of</u> <u>Units</u> (SI)

Is defined as being equal to the mass of the International Prototype of the Kilogram (platinum-iridium alloy) in International Bureau of Weights and Measures in Sèvres, France

Second (sec or s)

The second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.

Table 1.2: Fundamental physical quantities

Fundamental Quantity	SI unit	SI unit symbol	Dimension
Length			
Mass			
Time			
Electric current			
Temperature			
Light intensity		A CARLER AND	

Tanjore Temple Secrets Part-2 https://www.youtube.com/watch?v=JkQzAnojtvI

How many figures can you see in the image below?

How many figures can you see in the image below?

Answer: If you look closely, you can see both a young and an elderly woman.

MULTIPLY ANY TWO DIGIT NUMBER BY 11

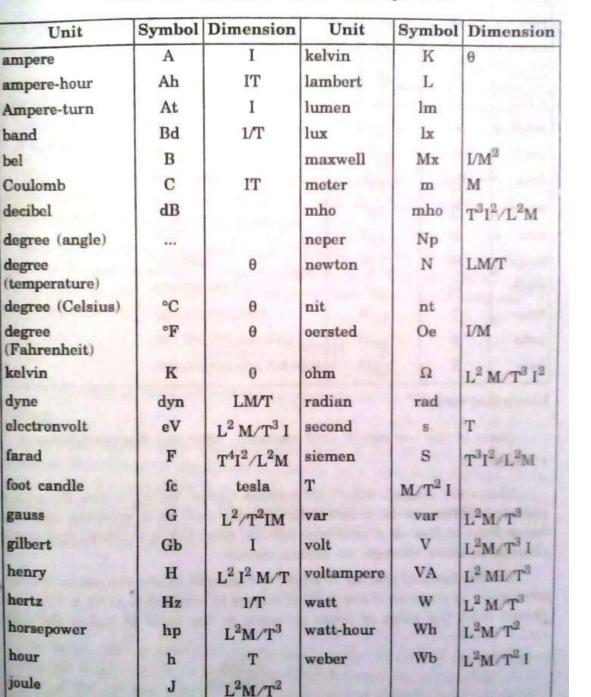


Table 1.2: Fundamental physical quantities

Fundamental Quantity	SI unit	SI unit symbol	Dimension
Length	meter	m	L
Mass	kilogram	kg	М
Time	second	8	Т
Electric current	ampere	A	1
Temperature	kelvin	k	0
Light intensity	candela	cd	

Table 1.3: Standard units and symbols

3/13/2023

Table 1.4: Multiplier prefixes

Prefix	Symbol	Multiplier	Decimal Value	
atto-	a	10-18	0.000 000 000 000 000 000	
femto-	f	10-15	0.000 000 000 000 001	
pico-	P	10- 12	0.000 000 000 001	
nano-	n	10-9	0.000 000 001	
micro-	μ	10-6	0.000 001	
milli-	m	10-3	0.001	
centi-	c	10-2	0.01	
deci-	d	10-1	0.1	
deca-	da	10 ¹	10	
hecto-	h	10^{2}	100	
kilo-	k	10 ³	1000	
mega-	М	10 ⁶	1000,000	
giga-	G	109	1000,000,000	
tera-	Т	10 ¹²	1000,000,000,000	
peta-	Р	1015	1000,000,000,000	
exa-	E	10 ¹⁸	1000,000,000,000,000	

- 1. International standards
- 2. Primary standards
- 3. Secondary standards
- 4. Working standards

Defined by international agreement

- Periodically evaluated and checked by absolute measurements in terms of fundamental units of physics
- Not available to ordinary users for measurements and calibration

Example:

- **1. International Ohms**
- 2. International Amperes

1. International Ohms

- A unit of resistance, equal to that of a column of mercury of uniform cross section that has a length of 160.3 centimeters and a mass of 14.4521 grams at the temperature of melting ice; it has been superseded by the ohm, and is equal to 1.00049 ohms.

Principle function of primary standards is the calibration and verification of secondary standards

- Maintained at national standards laboratories in different countries
- Not available for use outside the national laboratory
- >Absolute standards of high accuracy
- Used as ultimate standards

- Basic reference standards used by measurement and calibration laboratories in industries
- **Each industry has its own secondary standard**
- Periodically calibrated and compared against primary standard at national laboratories
- Certificate issued by national laboratory includes measuring accuracy in terms of primary standard

Principle tools of measurement laboratory

- Used to check and calibrate laboratory instrument for accuracy and performance
- Example:
- **Standard resistor**
- Standard capacitor, etc.,

- http://www.nplindia.org
- http://www.npl.co.uk
- https://www.nist.gov

1. A ______ is an exact quantity that people agree to use to compare measurements.

2. Which one is accurate? (Primary Standard Quantity / Secondary Standard Quantity)

3. What are the SI unit of the following :

(i) Temperature(ii) Current(iii) Luminous intensity of light(iv) Amount of substance

4. International units of electrical systems are _

THANK YOU