STATISTICAL ANALYSIS OF MEASUREMENT DATA

REVIEW - CLASS-6

Errors in Measurement

CONTENT-CLASS-7

Review Answers
for worksheet-6

Video ShowTanjore Temple Secrets Part-1

Worksheet-7

STATISTICAL ANALYSIS

$>$ Statistical methods are frequently used to find the most probable value from a group of readings taken from a given experiment.

1. Average or arithmetic mean value
2. Deviation from the average value
3. Average deviation
4. Standard deviation
5. Variance
6. Gaussian (normal) distribution of error

AVERAGE OR ARITHMETIC MEAN STHE

* Most probable value obtained from a series of readings of a given quantity.
*The more readings, the more closely the computed average values.

$$
\bar{X}=\frac{\sum x_{i}}{n}=\frac{x_{1}+x_{2}+\ldots \ldots x_{n}}{n}
$$

where $\overline{\mathrm{X}}$ is the average value or arithmetic mean
x_{i} is the value of the $i^{\text {th }}$ reading
n is the number of readings

DEVIATION FROM THE AVERAGE VALUE

The deviation from the average value is a measure of how far each measured value departs from the average value. It may be either positive or negative. For a value x_{i} from a group of values having an average value $\overline{\mathrm{X}}$, the deviation d of x_{i} is expressed as

$$
\begin{equation*}
d_{i}=x_{i}-\bar{X} \tag{1.40}
\end{equation*}
$$

VIDEO SHOW

Tanjore Temple Secrets Part-1

 https://www.youtube.com/watch?v=yySZCRgAX g
AVERAGE DEVIATION

* Measure of how much the data is dispersed. *Result is always positive number. Indicates the precision of the measurement.
*Not as useful as the standard deviation.

STANDARD DEVIATION

*Also known as root mean square deviation.

* Mathematically more convenient and statistically more meaningful for analyzing grouped data.

$$
\mathrm{s}=\sqrt{\frac{\sum\left(\overline{\mathrm{X}}-\mathrm{x}_{\mathrm{i}}\right)^{2}}{\mathrm{n}}}=\sqrt{\frac{\Sigma \mathrm{d}_{\mathrm{i}}^{2}}{\mathrm{n}}}
$$

If number of observations are < 20,

$$
s=\sqrt{\frac{\left.\Sigma \overline{\mathrm{x}}-x_{\mathrm{i}}\right)^{2}}{\mathrm{n}-1}}
$$

VARIANCE

It is the mean square deviation, which is the same as standard deviation, except the square root is not extracted.

$$
\begin{aligned}
\mathrm{V} & =(\text { Standard doviation })^{2} \\
& =\frac{\mathrm{d}_{1}^{2}+\mathrm{d}_{2}^{2}+\mathrm{d}_{3}^{2}+\ldots \ldots+\mathrm{d}_{\mathrm{n}}^{2}}{\mathrm{n}} \\
& =\frac{\Sigma \mathrm{d}^{2}}{\mathrm{n}}
\end{aligned}
$$

When, the number of observations is less than 20 ,
Variance $\mathrm{V}=\frac{\Sigma \mathrm{d}^{2}}{\mathrm{n}-1}$

GAUSSIAN (NORMAL) DISTRIBUTION OF ERROR

Graph a large number of readings versus the number of times each reading appears form of a histogram, or bar graph.

* A smooth curve drawn through the top of the bars will be bell-shaped and will peak at or near the true value.

Fig. 1.12: Normal curve of error probability

CLASS WORK PROBLEM

1. The following table gives the set of 5 measurement that were recorded in the laboratory. Calculate the precision of the $4^{\text {th }}$ measurement.
1-98
2-102
3-101
4-103
5-106 Precision $P=1-\left|X_{n}-{ }^{-} X_{n}\right| /{ }^{-} X_{n}$

STUDENT'S CORNER

Work sheet

1. If a set of six observations as follows:

$$
1.5 \mathrm{~V}, 3 \mathrm{~V}, 1 \mathrm{~V}, 5 \mathrm{~V}, 2 \mathrm{~V}, 4 \mathrm{~V} .
$$

Calculate the arithmetic mean, average deviation.

THANK YOU

