

STATISTICAL ANALYSIS OF MEASUREMENT DATA

Errors in Measurement

CONTENT-CLASS-7

Review Answers for worksheet-6	Statistical Analysis of Measurement Data	Video Show- Tanjore Temple Secrets Part-1
Class work Problem	Summary	Worksheet-7

Statistical methods are frequently used to find the most probable value from a group of readings taken from a given experiment.

- 1. Average or arithmetic mean value
- 2. Deviation from the average value
- 3. Average deviation
- 4. Standard deviation
- 5. Variance
- 6. Gaussian (normal) distribution of error

Most probable value obtained from a series of readings of a given quantity.

The more readings, the more closely the computed average values.

 $\overline{X} = \frac{\Sigma x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$ where \overline{X} is the average value or arithmetic mean x_i is the value of the ith reading n is the number of readings

DEVIATION FROM THE AVERAGE VALUE

The deviation from the average value is a measure of how far each measured value departs from the average value. It may be either positive or negative. For a value x_i from a group of values having an average value \overline{X} , the deviation d of x_i is expressed as ... (1.40)

$$d_i = x_i - \overline{X}$$

Tanjore Temple Secrets Part-1 https://www.youtube.com/watch?v=yySZCRgAX_g

Measure of how much the data is dispersed. Result is always positive number. Indicates the precision of the measurement. Not as useful as the standard deviation.

Also known as root mean square deviation.

Mathematically more convenient and statistically more meaningful for analyzing grouped data.

$$s = \sqrt{\frac{\Sigma (\overline{X} - x_i)^2}{n}} = \sqrt{\frac{\Sigma d_i^2}{n}}$$

If number of observations are < 20,

$$s = \sqrt{\frac{\Sigma \ (\overline{X} - x_i)^2}{n-1}}$$

It is the mean square deviation, which is the same as standard deviation, except the square root is not extracted.

GAUSSIAN (NORMAL) DISTRIBUTION

- Graph a large number of readings versus the number of times each reading appears form of a histogram, or bar graph.
- A smooth curve drawn through the top of the bars will be bell-shaped and will peak at or near the true value.

The following table gives the set of 5 measurement that were recorded in the laboratory. Calculate the precision of the 4th measurement.

1-98

- 2-102
- 3-101

4-103

5-106 Precision P = $1 - |X_n - X_n| / X_n$

STUDENT'S CORNER

Work sheet

1. If a set of six observations as follows:

1.5V, 3V, 1V, 5V, 2V, 4V.

Calculate the arithmetic mean, average deviation.

THANK YOU