
19IT103 – COMPUTATIONAL THINKING
AND PYTHON PROGRAMMING

 A readable, dynamic, pleasant, flexible, fast and powerful
language

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’

Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF CSE

1

Recap

• “break” statement is used terminate the loop in
between the iterations

• “continue” statement is used to skip an iteration
• “pass” statement acts as a placeholders for future

code
• Python Functions is a block of related statements

designed to perform a computational, logical, or
evaluative task.

• Flow of execution is the order in which statements
are executed

Agenda

• Functions
– Arguments vs parameters
– Types of arguments

• Fruitful functions
• Local and global scope

3.4 Functions
Arguments vs parameters

cont’d

Arguments Parameters

Arguments are used when a
function is called

Parameters are used when function
is to be defined

An argument is a value passed to a
function when calling the function.

A parameter is a named entity in a
function definition that specifies an
argument that the function can
accept.

Very often, there is a 1:1 mapping
between arguments and...

...the parameters defined in the
function.

Arguments can be constants, local
variables or objects

Parameters cannot be a constant.

There are keyword arguments, and
there are positional arguments.
Anything that is not a keyword
argument is a positional argument.

Keyword parameters and positional
parameters

3.4 Functions
Arguments vs parameters

The scope of the arguments are
relevant only in the called
function

The scope of the parameters have
valid scope only within the
function where they occur

Types of Arguments
Positional/Required: Arguments

without a name.
keyword: Arguments with a

name.
default: a value provided in a
function declaration that is
automatically assigned. It is more
precise to refer to this as
“parameter with default value”
Variable-length arguments:
Variable length argument make
function calls with arbitrary
number of arguments

Types of Parameters
positional-or-keyword:
parameters in a function
definition, with or without default
values.
positional-only: Only found in
builtin/extension functions.
var-positional: This is the *args.
keyword-only: parameters that
come after a * or *args, with or
without default values.
var-keyword: This is the **args

3.4 Functions

Types of Arguments
• Required arguments
• Keyword arguments
• Default arguments
• Variable-length arguments

3.4 Functions
Types of Arguments
1. Required arguments
• Required arguments are the arguments

passed to a function in correct positional
order.

• The number of arguments in the function call
should match exactly with the function
definition.

3.4 Functions
Types of Arguments
1. Required arguments
Example:

Output:

3.4 Functions
Types of Arguments
2. Keyword arguments
• When keyword arguments in a function call,

the caller identifies the arguments by the
parameter name.

• This allows you to skip arguments or place
them out of order because the Python
interpreter is able to use the keywords
provided to match the values with
parameters.

3.4 Functions
Types of Arguments
2. Keyword arguments
Example:

Output:

3.4 Functions
Types of Arguments
3. Default arguments
• A default argument is an argument that

assumes a default value if a value is not
provided in the function call for that
argument.

3.4 Functions

Types of Arguments
3.Default arguments
Example:

Output:

3.4 Functions
Types of Arguments
4. Variable-length arguments
• Variable length argument make function calls

with arbitrary number of arguments
• These arguments are called variable-length

arguments and are not named in the function
definition, unlike required and default
arguments.

• Syntax:

3.4 Functions
Types of Arguments
4. Variable-length arguments
Example:

Output:

3.4 Functions – Fruitful functions
• The statement return [expression] exits a

function, optionally passing back an
expression to the caller.

• A return statement with no arguments is the
same as return None.

• If a function returns some value then it is
called as fruitful function

• Def: A function with a return value is called
fruitful function

3.4 Functions –Fruitful functions
Example:

Output:

Recap

• Values present in the function calling statement are
called arguments

• Variables used in the function header are called
parameters

• Required, keyword, default and variable-length are
types of arguments

• Variable can be created with local and global scopes
• Global keyword creates a global variable inside a

block

Agenda
• Functions composition and Lambda functions
• Recursion

Functions composition
• Function composition is a way of combining

functions such that the result of each function is
passed as the argument of the next function.

• For example, the composition of two
functions f and g is denoted f(g(x)).

• x is the argument of g, the result of g is passed as the
argument of f and the result of the composition is
the result of f.

• Function composition is achieved through lambda
functions

Functions composition
• Lambda functions are called anonymous because

they are not declared in the standard manner by
using the def keyword.

• You can use the lambda keyword to create small
anonymous functions.

• Lambda can take any number of arguments but
return just one value in the form of an expression.
They cannot contain commands or multiple
expressions.

• An anonymous function cannot be a direct call to
print because lambda requires an expression

Functions composition
• For example, compose2 is a function that takes two

functions as arguments (f and g) and returns a
function representing their composition

Example:

Output:

Composing n Functions
• It would be interesting to generalize the concept to

accept n functions
Example:

Output:

Composing n Functions using “functools”
Example:

Output:

Functions composition
Syntax

Example:

Output:

Recursion
• Recursion is the process calling a function by

itself
• For example, to find the factorial of an integer

can be written as recursive function.
• Factorial of a number is the product of all the

integers from 1 to that number.
• For example, the factorial of 6 (denoted as 6!)

is 12345*6 = 720.

Recursion
Example:

Recursion
Output:

Recursion

• Our recursion ends when the number reduces
to 1. This is called the base condition.

• Every recursive function must have a base
condition that stops the recursion or else the
function calls itself infinitely.

Recursion
Advantages of recursion
• Recursive functions make the code look clean

and elegant.
• A complex task can be broken down into

simpler sub-problems using recursion.
• Sequence generation is easier with recursion

than using some nested iteration.

Recursion
Disadvantages of recursion
• Sometimes the logic behind recursion is hard

to follow through.
• Recursive calls are expensive (inefficient) as

they take up a lot of memory and time.
• Recursive functions are hard to debug.

Summary
• Function composition is a way of combining

functions
• Recursion is the process calling a function by

itself
• Function composition is achieved through

lambda functions
• Lambda functions are called anonymous

because they are not declared in the standard
manner by using the def keyword

