SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107 -
An Autonomous Institution - o
Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A’ Grade »

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai I,

DEPARTMENT OF CSE

&, python

191T103 - COMPUTATIONAL THINKING
AND PYTHON PROGRAMMING

% A readable, dynamic, pleasant, flexible, fast and powerful
language



UNIT II DATA TYPES, EXPRESSIONS,
STATEMENTS

* Python interpreter and interactive mode, debugging; values and types:

int, float, boolean, string , and list; variables, EXpressions, statements,|

fuple assighment, precedence of operators, comments; Illustrative

programs: exchange the values of two variables, circulate the values of

n variables, distance between two points.

7



Recap

* Variables
* Object References

* Rules for Naming Identifier



Expressions

* An expression is a combination of operators and operands that is

interpreted to produce some other value.
* An expression 1s evaluated as per the precedence of its operators.

* If there 1s more than one operator in an expression, their precedence

decides which operation will be performed first.



Expressions

* Types of Expressions:

* Constant Expressions

Arithmetic Expressions

Integral Expressions

Floating Expressions

Relational Expressions

Logical Expressions

Bitwise Expressions

@ombinational Expressions



Constant Expressions

* These are the expressions that have constant values only.

> Python 3.8.0 Shell - ] ¢
File Edit Shell Debug Options Window Help

Python 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:3
7:50) [MSC v.1916 64 bit (AMD64)] on win32

Type "help”, "copyright”, “"credits” or “license()"” for
more information.

>>> num=15+1.5

>>> num

16.5

>>>



Arithmetic Expressions

* An arithmetic expression is a combination of numeric values,

operators, and sometimes parenthesis.
* The result of this type of expression is also a numeric value.

* The operators used 1n these expressions are arithmetic operators like

addition, subtraction, etc.



Arithmetic Expressions

>>> num1=40

>>> num2=30

>>> add=num1+num2
>>> add

70

>>> sub=num1-num2
>>> sub

10

>>> prod=num1*num2
>>> prod

1200

>>> div=num1/num2
>>> div
1.3333333333333333
>>>



Integral Expressions

* These are the kind of expressions that produce only integer results

after all computations and type conversions.

>>> num1=12

>>> num2=32.0

>>> result=num1+int(hum22)
>>> result

44

>>>



Floating Expressions

* These are the kind of expressions which produce floating point

numbers as result after all computations and type conversions.

>>> num1=13

>>> num2=3

>>> print(hum1/num2)
4.333333333333333
>>> |




Relational Expressions

* In these types of expressions, arithmetic expressions are written on

both sides of relational operator (>, <,>=, <=).

* Those arithmetic expressions are evaluated first, and then compared as

per relational operator and produce a boolean output in the end.

* These expressions are also called Boolean expressions.



Relational Expressions

>>> hum1=21

>>> num2=13

>>> num3=40

>>> expr=(num1+num2)>=(num3-numz2)
>>> expr

True

>>>



Logical Expressions

* These are kinds of expressions that result in either True or False. It

basically specifies one or more conditions.

> Python 3.8.0 Shell = m} X
File Edit Shell Debug Options Window Help

Python 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:3
7:50) [MSC v.1916 64 bit (AMD64)] on win32

Type "help”, "copyright”, “credits” or "license()" for
more information.

>>> num1=(10==9)

>>> num2=(7>5)

>>> print(hum1 and num2)

False

>>> print(hum1 or num2)

D True

/ >>> print(not num1)

True
>>> |



Bitwise Expressions

* These are the kind of expressions in which computations are
performed at bit level.

>>> num=12

>>> print(hum>>2)
3

>>> print(hum<<2)
48

>>> |



Combinational Expressions

* Use different types of expressions in a single expression, and that

will be termed as combinational expressions.

>>> num1=10

>>> num2=15

>>> print(num1+(num2>>1))
17

>>> |



Combinational Expressions

* Use different types of expressions in a single expression, and that

will be termed as combinational expressions.

>>> num1=10

>>> num2=15

>>> print(num1+(num2>>1))
17

>>> |



Statements

* A statement 1s a unit of code that the Python interpreter can execute.

 Statements represent an action or command

* Eg: print, assignment statement

* The important difference 1s that an expression has a value; a statement does

not.

» Statements on the other hand, are everything that can make up a line (or

several lines) of Python code.

» Expressions are statements as well.



Statements vs Expressions

Expressions

An expression evaluates to a value

The evaluation of a statement does not change

state

Evaluation of an expression always Produces or

returns a result value.

Example: >>>a + 16

>>> 20

Statements

Statements represent an action or command

The execution of a statement changes state

Execution of a statement may or may not
produces or displays a result value, it only does

whatever the statement says.

Example: >>>x = 3

>>> print(x)

Output: 3



Tuple Assignment

* Tuple i1s sequence data type.
* Initialise or create a tuple in various ways.
* The process of assigning values to a tuple 1s known as packing.

* The unpacking or tuple assignment is the process that assigns the

values on the right-hand side to the left-hand side variables.



Tuple Packing (Creating Tuples)

* Tuple can contain all elements of the same data type as well as of

mixed data types as well.

>>>tup = (22, 33, 5, 2

>>>tup




Tuple Packing (Creating Tuples)

* Tuple with mixed data type

>>tup2 = ('hi', 11, 45.7)

>>>tup2

('hi', 11, 45.7)




Tuple Packing (Creating Tuples)

* Tuple with a tuple as an element

>>>tup3 = (55, (6, "hi'), 67)

>>>tup3

(55, (6, 'hi'), 67)

>>> tup3 = (55, (6, "hi’), 67)
>>> tup3[1][1]
'hi'




Tuple Packing (Creating Tuples)

* Tuple with a list as an element

>>>tup3 = (55, [6, 9], 67)

>>>tup3

(SSJ [6J 9]) 67)

>>> tup3 = (55, [6, 9], 67)
>>> tup3[1][0]

6

>>> |




Tuple Packing (Creating Tuples)

* If there 1s only a single element in a tuple we should end it with a

comima.

* Since writing, just the element inside the parenthesis will be

considered as an integer. s> tup=(90)
>>> type(tup)
<class ‘int'>
>>> tup=(90,)
>>> type(tup)
<class 'tuple’™
>>> |



Tuple Packing (Creating Tuples)

* If there 1s only a single element in a tuple we should end it with a

comima.

* Since writing, just the element inside the parenthesis will be

considered as an integer. s> tup=(90)
>>> type(tup)
<class ‘int'>
>>> tup=(90,)
>>> type(tup)
<class 'tuple’™
>>> |



Tuple Packing (Creating Tuples)

* If you write any sequence separated by commas, python considers it as

a tuple.

>>> seq = 22, 4, 56
>>> print(seq)

(22, 4, 56)

>>> type(seq)
<class 'tuple™

>>> |



Tuple Assignment (Unpacking)

* Unpacking or tuple assignment 1s the process that assigns the values

on the right-hand side to the left-hand side variables.
>>>(n1, n2) = (929, 7)
>>>print(nl)

99

>>>print(n2)




Tuple Assignment (Unpacking)

>>>tupl 99, 6.7)

>>>(roll no., english, maths, GPA) = tupl

>>>print(english)

>>>print(roll no.)

>>>print (GPA)




Tuple Assignment (Unpacking)

>>> (numl, num2, num3, num4, num5) = (88, 9.8,

ValueError: not enough values to unpack

(expected 5, got 4)




