SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Lo~ e
~»

rrorionss

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

&, python

191T103 - COMPUTATIONAL THINKING
AND PYTHON PROGRAMMING

“* A readable, dynamic, pleasant, flexible, fast and powerful
language

Recap:

* Notations (pseudocode, flow chart, programming language).

« Flowcharts are a graphical means of representing an algorithm
* Flowchart Is a diagrammatic representation of sequence of logical steps of a

program.

« A programming language is a formal language that specifies a set of
Instructions that can be used to produce various kinds of output.
* Programming languages generally consist of instructions for a computer.

* Eg:C, C++, COBAL, JAVA, Python ... Etc

1.6 Algorithmic problem solving:

« An algorithm is a defined set of step-by-step procedures that provides the

correct answer to a particular problem.

* Algorithmic problem solving is solving problem that require the formulation

of an algorithm for their solution.

* The formulation of algorithm is always been an important element of problem

solving.

« We can consider algorithms to be procedural solutions to problems.

1.6 Algorithmic problem solving:

Understand the problem

Decide on:
computational means,
exact vs. approximate solving,
algorithm design technique

v
Design an algorithm

| 4
Prove correctness

k4
Analyze the algorithm

Code the algorithm

Figure 1: Algorithm design and analysis process

1.6 Algorithmic problem solving:

The fundamental steps are:

Understanding the problem

Ascertaining the capabilities of computational device
Choose between exact and approximate problem solving
Decide on appropriate data structures

Algorithm design technigues

Methods for specifying the algorithm

Proving an algorithm’s correctness

Analyzing an algorithm

Coding an algorithm

1.6 Algorithmic problem solving:

1. Understanding the problem :

 The first thing we need to do before designing an algorithm is to understand

completely the problem given.

* Read the problem’s description carefully and ask questions if you have

any doubts about the problem.

« An Input to an algorithm specifies an instance of the problem the algorithm

solves.

1.6 Algorithmic problem solving:

1. Understanding the problem :

* It is very important to specify exactly the range of instances the algorithm

needs to handle.

« Correct algorithm is not one that works most of the time, but one that

works correctly for all legitimate inputs.

* Do not skip on this first step of algorithmic problem-solving process; if we

do, then we need to do unnecessary rework on it.

1.6 Algorithmic problem solving:

2. Ascertain the capabilities of computational device :

 Once you completely understand a problem, you need to ascertain the

capabilities of the computational device the algorithm is intended for.

« If the instructions are executed one after another, one operation at a time.
Algorithms designed to be executed on such machines are called sequential
algorithm.

« If the instructions are executed concurrently, it is called parallel algorithm.

1.6 Algorithmic problem solving:

3. Choose between exact and approximate problem solving :

 Next principal decision is to Choose between solving the problem exactly or

solving the problem approximately.

 Case 1: solving the problem exactly — an algorithm is called exact algorithm

e Case 2: solving the problem approximately — an algorithm is called
approximation algorithm.

 First, some important problems cannot be solved exactly for most of their
Instances; example — extracting square roots solving nonlinear equations.

« Second, available algorithm for solving a problem exactly can be

unacceptably slow because of the problem’s intrinsic complexity

1.6 Algorithmic problem solving:

4. Decide on appropriate data structures :

« Data structure plays a vital role in designing and analysis the algorithms.

« Some of the algorithm design techniques also depend on the structuring or

restructuring data specifying a problem’s instance.

» Algorithm+ Data structure=programs.

1.6 Algorithmic problem solving:

5. Algorithm Design Techniques:

« An algorithm design technique (or “strategy” or “paradigm™) IS a general
approach to solving problems algorithmically that is applicable to a variety
of problems from different areas of computing.

 Learning these techniques is of atmost importance for the following reasons:

* First, they provide guidance for designing algorithms for new problems,
ex : problems for which there is no known satisfactory algorithm.
 Second, algorithms are the cornerstone of computer science.

« Algorithm design techniques make it possible to classify algorithms

according to an underlying design idea.

	Slide 1: 19IT103 – COMPUTATIONAL THINKING AND PYTHON PROGRAMMING
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

