
19IT103 – COMPUTATIONAL THINKING

AND PYTHON PROGRAMMING

❖A readable, dynamic, pleasant, flexible, fast and powerful

language

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

1

1.6 Algorithmic problem solving:

6. Methods of Specifying an Algorithm:

• Three ways to specify an algorithm

• Pseudocode

• Flowchart

• Programming language

1.6 Algorithmic problem solving:

6. Methods of Specifying an Algorithm:..

6.1 Pseudocode :

• Pseudocode is a mixture of a natural language and programming language-

like constructs.

• Pseudocode is usually more precise than natural language, and its usage often

yields more concise algorithm descriptions.

1.6 Algorithmic problem solving:

6. Methods of Specifying an Algorithm:..

6.2 Flowchart:

• In the earlier days of computing, the dominant vehicle for specifying

algorithms was a flowchart.

• A Flow chart is a method of expressing an algorithm by a collection of

connected geometric shapes containing descriptions of the algorithm’s steps.

1.6 Algorithmic problem solving:

6. Methods of Specifying an Algorithm:..

6.3 Programming language:

• A programming language is a formal language that specifies a set of

instructions that can be used to produce various kinds of output.

• Programming languages generally consist of instructions for a computer.

• Programming languages can be used to create programs that implement

specific algorithms.

• Eg : C, C++, COBAL, JAVA, Python ... Etc

1.6 Algorithmic problem solving:

7. Proving an Algorithm’s correctness:

• Once the algorithm has been specified, then its correctness must be proved.

• An algorithm must yield a required result for every legitimate input in a finite

amount of time.

• For some algorithm, a proof of correctness is quite easy; for others, it can be

quite complex.

1.6 Algorithmic problem solving:

7. Proving an Algorithm’s correctness:..

• A common technique for proving correctness is to use mathematical

induction because an algorithm’s iterations provide a natural sequence of

steps needed for such proofs.

• The notion of correctness for approximation algorithm is less straightforward

than it is for exact algorithms.

1.6 Algorithmic problem solving:

8. Analyzing an Algorithm:

• Our algorithms need to possess several qualities. After correctness, the most

important one is efficiency.

• There are two kind of algorithm efficiency: i) Time efficiency ii) Space

efficiency

• Time efficiency: Indicates how fast the algorithm runs.

1.6 Algorithmic problem solving:

8. Analyzing an Algorithm:..

• Space efficiency: indicates how much extra memory the algorithm needs.

• Another desirable characteristic’s of an algorithm are simplicity and

generality.

• If you are not satisfied with the algorithm’s efficiency, simplicity, or

generality, you must return to the drawing board and redesign the algorithm.

1.6 Algorithmic problem solving:

9. Coding an Algorithm:

• Most algorithms are destined to be ultimately implemented as computer

programs.

• The coding / implementation of an algorithm is done by a suitable

programming language like C, C++, JAVA

• It is very essential to write an optimized code (efficient code) to reduce the

burden of compiler.

1.6 Algorithmic problem solving:

• As a rule a good algorithm is a result of repeated effort and rework.

• Even if you have been fortunate enough to get an algorithmic idea that seems

perfect, you should still try to see whether it can be improved.

1.6 Algorithmic problem solving:

• An important issue of algorithmic problem solving is the question of whether

or not every problem can be solved by an algorithm.

• Fortunately, a vast majority of problems in practical computing can be solved

by an algorithm.

Summary:

• An algorithm is a sequence of non ambiguous instructions for solving a

problem in a finite amount of time.

• An input to an algorithm specifies an instance of the problem the algorithm

solves.

• Algorithm can be specified in a natural language or a pseudocode; they can

also be implemented as computer programs.

Summary:

• Algorithm design techniques are general approaches to solving problems

algorithmically, applicable to a verity of problems from different areas of

computing.

• The same problem can often be solved by several algorithms.

• Algorithms operate on data. This makes the issue of data structuring critical

for efficient algorithmic problem solving.

	Slide 1: 19IT103 – COMPUTATIONAL THINKING AND PYTHON PROGRAMMING
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

