

19CH201 - ENGINEERING CHEMISTRY

UNIT-1 - ELECTROCHEMISTRY

1.2 Electrode potential - Nernst equation and problems

Single electrode potential (E)

It is the measure of tendency of a metallic electrode to lose or gain electrons, when it is in contact with a solution of its own salt.

Standard electrode potential (E°)

It is the measure of tendency of a metallic electrode to lose or gain electrons, when it is in contact with a solution of its own salt of 1 molar concentration at 25° C.

Nernst equation for electrode potential

Consider the following redox reaction

For such a redox reversible reaction, the free energy change (ΔG) and its equilibrium constant (K) are inter related as

$$\Delta G = -RT \ln K + RT \ln \underline{[Product]/[Reactant]}$$

$$= \Delta G^{\circ} + RT \ln \underline{[Product]} \qquad \dots \dots \dots (1)$$
[Reactant]

where,

$\Delta G^{\circ} =$ Standard free energy change

The above equation (1) is known as Van't Hoff isotherm. The decrease in free energy $(-\Delta G)$ in the above reaction involves transfer of 'n' number of electrons, then 'n' faraday of electricity will flow. If E is the emf of the cell, then the total electrical energy (nEF) produced in the cell is

$$-\Delta G = nEF$$

or)
$$-\Delta G^{\circ} = nE^{\circ}F \qquad \dots \dots (2)$$

where,

P.GANESHKUMAR/AP/SNSCE/CHEMISTRY	Unit-I	Page 1
, , ,		0

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641 107 AN AUTONOMOUS INSTITUTION Accredited by NBA - AICTE and Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

 $-\Delta G$ = decrease in free energy change.

(or) $-\Delta G^{\circ}$ = decrease in standard free energy change. Comparing equation 1 and 2, it becomes

$$-nEF = -nE^{\circ}F + RT \ln [M]$$
$$[M^{n+1}]$$

.....(3)

Dividing the above equation (3) by - nF

[the activity of solid metal [M] = 1]

$$E = E^{\circ} - \underline{RT} \quad \ln \quad \underline{1}$$
$$nF \quad [M^{n+}]$$

In general, $E = E^{\circ} - \underline{RT} \ln \underline{[Product]}$ nF [Reactant]

(or)

$$E = E^{\circ} + \underline{RT} \ln [M^{n+}]$$
nF

(or)

$$E = E^{\circ} + \frac{2.303RT}{nF} \log[M^{n+}]$$

When, R = 8.314 J/K/mole; F = 96500 coulombs; $T = 298 \text{ K} (25^{\circ}\text{C})$, the above equation becomes

$$E = E_{red}^{o} + \frac{0.0591}{n} \log[M^{n+}]$$

In general,

$$E = E^{\circ}_{oxi} + \frac{0.0591}{n} \log C$$

Similarly for oxidation potential

$$E = E_{oxi}^{o} + \frac{0.0591}{n} \log[M^{n+}]$$

The above equation 5&6 are known as "Nernst equation for single electrode potential".

SNS COLLEGE OF ENGINEERING Kurumbapalayam(Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION Accredited by NBA – AICTE and Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Applications of Nernst equations

Nernst equation is used to calculate electrode potential of unknown metal.

Corrosion tendency of metals can be predicted.

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore – 641 107 AN AUTONOMOUS INSTITUTION Accredited by NBA – AICTE and Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

