

 8086
8086 Microprocessor is an enhanced version of 8085Microprocessor that

was designed by Intel in 1976. It is a 16-bit Microprocessor having 20

address lines and16 data lines that provides up to 1MB storage. It

consists of powerful instruction set, which provides operations like

multiplication and division easily.

It supports two modes of operation, i.e. Maximum mode and Minimum

mode. Maximum mode is suitable for system having multiple processors

and Minimum mode is suitable for system having a single processor.

Features of 8086
The most prominent features of a 8086 microprocessor are as follows −

 It has an instruction queue, which is capable of storing six instruction bytes

from the memory resulting in faster processing.

 It was the first 16-bit processor having 16-bit ALU, 16-bit registers, internal

data bus, and 16-bit external data bus resulting in faster processing.

 It is available in 3 versions based on the frequency of operation −

o 8086 → 5MHz

o 8086-2 → 8MHz

o (c)8086-1 → 10 MHz

 It uses two stages of pipelining, i.e. Fetch Stage and Execute Stage, which

improves performance.

 Fetch stage can prefetch up to 6 bytes of instructions and stores them in the

queue.

 Execute stage executes these instructions.

 It has 256 vectored interrupts.

 It consists of 29,000 transistors.

Comparison between 8085 & 8086

Microprocessor

 Size − 8085 is 8-bit microprocessor, whereas 8086 is 16-bit microprocessor.

 Address Bus − 8085 has 16-bit address bus while 8086 has 20-bit address

bus.

 Memory − 8085 can access up to 64Kb, whereas 8086 can access up to 1

Mb of memory.

 Instruction − 8085 doesn’t have an instruction queue, whereas 8086 has an

instruction queue.

 Pipelining − 8085 doesn’t support a pipelined architecture while 8086

supports a pipelined architecture.

 I/O − 8085 can address 2^8 = 256 I/O's, whereas 8086 can access 2^16 =

65,536 I/O's.

 Cost − The cost of 8085 is low whereas that of 8086 is high.

Architecture of 8086
The following diagram depicts the architecture of a 8086 Microprocessor

−

8086 Microprocessor is divided into two functional units, i.e.,

EU (Execution Unit) and BIU (Bus Interface Unit).

EU (Execution Unit)
Execution unit gives instructions to BIU stating from where to fetch the

data and then decode and execute those instructions. Its function is to

control operations on data using the instruction decoder & ALU. EU has

no direct connection with system buses as shown in the above figure, it

performs operations over data through BIU.

Let us now discuss the functional parts of 8086 microprocessors.

ALU

It handles all arithmetic and logical operations, like +, −, ×, /, OR, AND,

NOT operations.

Flag Register

It is a 16-bit register that behaves like a flip-flop, i.e. it changes its

status according to the result stored in the accumulator. It has 9 flags and

they are divided into 2 groups − Conditional Flags and Control Flags.

Conditional Flags

It represents the result of the last arithmetic or logical instruction

executed. Following is the list of conditional flags −

 Carry flag − This flag indicates an overflow condition for arithmetic

operations.

 Auxiliary flag − When an operation is performed at ALU, it results in a

carry/barrow from lower nibble (i.e. D0 – D3) to upper nibble (i.e. D4 – D7),

then this flag is set, i.e. carry given by D3 bit to D4 is AF flag. The processor

uses this flag to perform binary to BCD conversion.

 Parity flag − This flag is used to indicate the parity of the result, i.e. when

the lower order 8-bits of the result contains even number of 1’s, then the

Parity Flag is set. For odd number of 1’s, the Parity Flag is reset.

 Zero flag − This flag is set to 1 when the result of arithmetic or logical

operation is zero else it is set to 0.

 Sign flag − This flag holds the sign of the result, i.e. when the result of the

operation is negative, then the sign flag is set to 1 else set to 0.

 Overflow flag − This flag represents the result when the system capacity is

exceeded.

Control Flags

Control flags controls the operations of the execution unit. Following is the

list of control flags −

 Trap flag − It is used for single step control and allows the user to execute

one instruction at a time for debugging. If it is set, then the program can be

run in a single step mode.

 Interrupt flag − It is an interrupt enable/disable flag, i.e. used to

allow/prohibit the interruption of a program. It is set to 1 for interrupt enabled

condition and set to 0 for interrupt disabled condition.

 Direction flag − It is used in string operation. As the name suggests when it

is set then string bytes are accessed from the higher memory address to the

lower memory address and vice-a-versa.

General purpose register

There are 8 general purpose registers, i.e., AH, AL, BH, BL, CH, CL, DH,

and DL. These registers can be used individually to store 8-bit data and

can be used in pairs to store 16bit data. The valid register pairs are AH

and AL, BH and BL, CH and CL, and DH and DL. It is referred to the AX,

BX, CX, and DX respectively.

 AX register − It is also known as accumulator register. It is used to store

operands for arithmetic operations.

 BX register − It is used as a base register. It is used to store the starting

base address of the memory area within the data segment.

 CX register − It is referred to as counter. It is used in loop instruction to store

the loop counter.

 DX register − This register is used to hold I/O port address for I/O instruction.

Stack pointer register

It is a 16-bit register, which holds the address from the start of the

segment to the memory location, where a word was most recently stored

on the stack.

BIU (Bus Interface Unit)
BIU takes care of all data and addresses transfers on the buses for the

EU like sending addresses, fetching instructions from the memory, reading

data from the ports and the memory as well as writing data to the ports

and the memory. EU has no direction connection with System Buses so

this is possible with the BIU. EU and BIU are connected with the Internal

Bus.

It has the following functional parts −

 Instruction queue − BIU contains the instruction queue. BIU gets upto 6

bytes of next instructions and stores them in the instruction queue. When EU

executes instructions and is ready for its next instruction, then it simply

reads the instruction from this instruction queue resulting in increased

execution speed.

 Fetching the next instruction while the current instruction executes is called

pipelining.

 Segment register − BIU has 4 segment buses, i.e. CS, DS, SS& ES. It

holds the addresses of instructions and data in memory, which are used by

the processor to access memory locations. It also contains 1 pointer register

IP, which holds the address of the next instruction to executed by the EU.

o CS − It stands for Code Segment. It is used for addressing a memory

location in the code segment of the memory, where the executable

program is stored.

o DS − It stands for Data Segment. It consists of data used by the

program andis accessed in the data segment by an offset address or

the content of other register that holds the offset address.

o SS − It stands for Stack Segment. It handles memory to store data and

addresses during execution.

o ES − It stands for Extra Segment. ES is additional data segment, which

is used by the string to hold the extra destination data.

 Instruction pointer − It is a 16-bit register used to hold the address of the

next instruction to be executed.

8086 Microprocessor is divided into two functional units,

i.e., EU (Execution Unit) and BIU (Bus Interface Unit).

The Bus Interface Unit (BIU) generates the 20-bit physical memory address

and provides the interface with external memory (ROM/RAM). As mentioned

earlier, 8086 has a single memory interface. To speed up the execution, 6-
bytes of instruction are fetched in advance and kept in a 6-byte Instruction

Queue while other instructions are being executed in the Execution Unit (EU).

Hence after the execution of an instruction, the next instruction is directly

fetched from the instruction queue without having to wait for the external
memory to send the instruction. This is called pipe-lining and is helpful for
speeding up the overall execution process.

8086's BIU produces the 20-bit physical memory address by combining a 16-

bit segment address with a 16-bit offset address. There are four 16-bit

segment registers, viz., the code segment (CS), the stack segment (SS), the

extra segment (ES), and the data segment (DS). These segment registers hold

the corresponding 16-bit segment addresses. A segment address is the upper
16-bits of the starting address of that segment. The lower 4-bits of the starting

address of a segment is always zero. The offset address is held by another 16-

bit register. The physical 20-bit address is calculated by shifting the segment

address 4-bit left and then adding that to the offset address.

For Example:

Code segment Register CS holds the segment address which is 4569 H

Instruction pointer IP holds the offset address which is 10A0 H
The physical 20-bit address is calculated as follows.

Segment address: 45690 H
Offset address :+ 10A0 H

Physical address : 46730 H

EU (Execution Unit)
Execution unit gives instructions to BIU stating from where to fetch the

data and then decode and execute those instructions. Its function is to

control operations on data using the instruction decoder & ALU. EU has

no direct connection with system buses as shown in the above figure, it

performs operations over data through BIU.

Let us now discuss the functional parts of 8086 microprocessors.

ALU

It handles all arithmetic and logical operations, like +, −, ×, /, OR, AND,

NOT operations.

Flag Register

It is a 16-bit register that behaves like a flip-flop, i.e. it changes its

status according to the result stored in the accumulator. It has 9 flags and

they are divided into 2 groups − Conditional Flags and Control Flags.

Conditional Flags

It represents the result of the last arithmetic or logical instruction

executed. Following is the list of conditional flags −

 Carry flag − This flag indicates an overflow condition for arithmetic

operations.

 Auxiliary flag − When an operation is performed at ALU, it results in a

carry/barrow from lower nibble (i.e. D0 – D3) to upper nibble (i.e. D4 – D7),

then this flag is set, i.e. carry given by D3 bit to D4 is AF flag. The processor

uses this flag to perform binary to BCD conversion.

 Parity flag − This flag is used to indicate the parity of the result, i.e. when

the lower order 8-bits of the result contains even number of 1’s, then the

Parity Flag is set. For odd number of 1’s, the Parity Flag is reset.

 Zero flag − This flag is set to 1 when the result of arithmetic or logical

operation is zero else it is set to 0.

 Sign flag − This flag holds the sign of the result, i.e. when the result of the

operation is negative, then the sign flag is set to 1 else set to 0.

 Overflow flag − This flag represents the result when the system capacity is

exceeded.

Control Flags

Control flags controls the operations of the execution unit. Following is the

list of control flags −

 Trap flag − It is used for single step control and allows the user to execute

one instruction at a time for debugging. If it is set, then the program can be

run in a single step mode.

 Interrupt flag − It is an interrupt enable/disable flag, i.e. used to

allow/prohibit the interruption of a program. It is set to 1 for interrupt enabled

condition and set to 0 for interrupt disabled condition.

 Direction flag − It is used in string operation. As the name suggests when it

is set then string bytes are accessed from the higher memory address to the

lower memory address and vice-a-versa.

General purpose register

There are 8 general purpose registers, i.e., AH, AL, BH, BL, CH, CL, DH,

and DL. These registers can be used individually to store 8-bit data and

can be used in pairs to store 16bit data. The valid register pairs are AH

and AL, BH and BL, CH and CL, and DH and DL. It is referred to the AX,

BX, CX, and DX respectively.

 AX register − It is also known as accumulator register. It is used to store

operands for arithmetic operations.

 BX register − It is used as a base register. It is used to store the starting

base address of the memory area within the data segment.

 CX register − It is referred to as counter. It is used in loop instruction to store

the loop counter.

 DX register − This register is used to hold I/O port address for I/O instruction.

Stack pointer register

It is a 16-bit register, which holds the address from the start of the

segment to the memory location, where a word was most recently stored

on the stack.

BIU (Bus Interface Unit)
BIU takes care of all data and addresses transfers on the buses for the

EU like sending addresses, fetching instructions from the memory, reading

data from the ports and the memory as well as writing data to the ports

and the memory. EU has no direction connection with System Buses so

this is possible with the BIU. EU and BIU are connected with the Internal

Bus.

It has the following functional parts −

 Instruction queue − BIU contains the instruction queue. BIU gets upto 6

bytes of next instructions and stores them in the instruction queue. When EU

executes instructions and is ready for its next instruction, then it simply

reads the instruction from this instruction queue resulting in increased

execution speed.

 Fetching the next instruction while the current instruction executes is called

pipelining.

 Segment register − BIU has 4 segment buses, i.e. CS, DS, SS& ES. It

holds the addresses of instructions and data in memory, which are used by

the processor to access memory locations. It also contains 1 pointer register

IP, which holds the address of the next instruction to executed by the EU.

o CS − It stands for Code Segment. It is used for addressing a memory

location in the code segment of the memory, where the executable

program is stored.

o DS − It stands for Data Segment. It consists of data used by the

program andis accessed in the data segment by an offset address or

the content of other register that holds the offset address.

o SS − It stands for Stack Segment. It handles memory to store data and

addresses during execution.

o ES − It stands for Extra Segment. ES is additional data segment, which

is used by the string to hold the extra destination data.

 Instruction pointer − It is a 16-bit register used to hold the address of the

next instruction to be executed.

Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) generates the 20-bit physical memory address and

provides the interface with external memory (ROM/RAM). As mentioned earlier, 8086

has a single memory interface. To speed up the execution, 6-bytes of instruction are
fetched in advance and kept in a 6-byte Instruction Queue while other instructions are

being executed in the Execution Unit (EU). Hence after the execution of an instruction

the next instruction is directly fetched from the instruction queue without having to

wait for the external memory to send the instruction. This is called pipe-lining and i
helpful for speeding up the overall execution process.

8086's BIU produces the 20-bit physical memory address by combining a 16-bi

segment address with a 16-bit offset address. There are four 16-bit segmen registers,

viz., the code segment (CS), the stack segment (SS), the extra segmen (ES), and the
data segment (DS). These segment registers hold the corresponding 16 bit segment

addresses. A segment address is the upper 16-bits of the starting addres of that

segment. The lower 4-bits of the starting address of a segment is always zero The

offset address is held by another 16-bit register. The physical 20-bit address i
calculated by shifting the segment address 4-bit left and then adding that to the offse

address.

For Example:

Code segment Register CS holds the segment address which is 4569 H

Instruction pointer IP holds the offset address which is 10A0 H
The physical 20-bit address is calculated as follows.

Segment address: 45690 H

Offset address :+ 10A0 H
Physical address : 46730 H

8086 Pin Diagram
Here is the pin diagram of 8086 microprocessor −

Let us now discuss the signals in detail −

Power supply and frequency signals

It uses 5V DC supply at VCC pin 40, and uses ground at VSS pin 1 and 20

for its operation.

Clock signal

Clock signal is provided through Pin-19. It provides timing to the

processor for operations. Its frequency is different for different versions,

i.e. 5MHz, 8MHz and 10MHz.

Address/data bus

AD0-AD15. These are 16 address/data bus. AD0-AD7 carries low order

byte data and AD8AD15 carries higher order byte data. During the first

clock cycle, it carries 16-bit address and after that it carries 16-bit data.

Address/status bus

A16-A19/S3-S6. These are the 4 address/status buses. During the first

clock cycle, it carries 4-bit address and later it carries status signals.

S7/BHE

BHE stands for Bus High Enable. It is available at pin 34 and used to

indicate the transfer of data using data bus D8-D15. This signal is low

during the first clock cycle, thereafter it is active.

Read(\overline{RD})

It is available at pin 32 and is used to read signal for Read operation.

Ready

It is available at pin 32. It is an acknowledgement signal from I/O

devices that data is transferred. It is an active high signal. When it is high,

it indicates that the device is ready to transfer data. When it is low, it

indicates wait state.

RESET

It is available at pin 21 and is used to restart the execution. It causes the

processor to immediately terminate its present activity. This signal is

active high for the first 4 clock cycles to RESET the microprocessor.

INTR

It is available at pin 18. It is an interrupt request signal, which is sampled

during the last clock cycle of each instruction to determine if the processor

considered this as an interrupt or not.

NMI

It stands for non-maskable interrupt and is available at pin 17. It is an

edge triggered input, which causes an interrupt request to the

microprocessor.

\overline{TEST}

This signal is like wait state and is available at pin 23. When this signal is

high, then the processor has to wait for IDLE state, else the execution

continues.

MN/\overline{MX}

It stands for Minimum/Maximum and is available at pin 33. It indicates

what mode the processor is to operate in; when it is high, it works in the

minimum mode and vice-aversa.

INTA

It is an interrupt acknowledgement signal and id available at pin 24. When

the microprocessor receives this signal, it acknowledges the interrupt.

ALE

It stands for address enable latch and is available at pin 25. A positive

pulse is generated each time the processor begins any operation. This

signal indicates the availability of a valid address on the address/data lines.

DEN

It stands for Data Enable and is available at pin 26. It is used to enable

Transreceiver 8286. The transreceiver is a device used to separate data

from the address/data bus.

DT/R

It stands for Data Transmit/Receive signal and is available at pin 27. It

decides the direction of data flow through the transreceiver. When it is

high, data is transmitted out and vice-a-versa.

M/IO

This signal is used to distinguish between memory and I/O operations.

When it is high, it indicates I/O operation and when it is low indicates the

memory operation. It is available at pin 28.

WR

It stands for write signal and is available at pin 29. It is used to write the

data into the memory or the output device depending on the status of

M/IO signal.

HLDA

It stands for Hold Acknowledgement signal and is available at pin 30.

This signal acknowledges the HOLD signal.

HOLD

This signal indicates to the processor that external devices are requesting

to access the address/data buses. It is available at pin 31.

QS1 and QS0

These are queue status signals and are available at pin 24 and 25. These

signals provide the status of instruction queue. Their conditions are shown

in the following table −

QS0 QS1 Status

0 0 No operation

0 1 First byte of opcode from the queue

1 0 Empty the queue

1 1 Subsequent byte from the queue

S0, S1, S2

These are the status signals that provide the status of operation, which is

used by the Bus Controller 8288 to generate memory & I/O control signals.

These are available at pin 26, 27, and 28. Following is the table showing

their status −

S2 S1 S0 Status

0 0 0 Interrupt acknowledgement

0 0 1 I/O Read

0 1 0 I/O Write

0 1 1 Halt

1 0 0 Opcode fetch

1 0 1 Memory read

1 1 0 Memory write

1 1 1 Passive

LOCK

When this signal is active, it indicates to the other processors not to ask

the CPU to leave the system bus. It is activated using the LOCK prefix on

any instruction and is available at pin 29.

RQ/GT1 and RQ/GT0

These are the Request/Grant signals used by the other processors

requesting the CPU to release the system bus. When the signal is received

by CPU, then it sends acknowledgment. RQ/GT0 has a higher priority than

RQ/GT1.

Instruction Set

The 8086 microprocessor supports 8 types of instructions −

 Data Transfer Instructions

 Arithmetic Instructions

 Bit Manipulation Instructions

 String Instructions

 Program Execution Transfer Instructions (Branch & Loop Instructions)

 Processor Control Instructions

 Iteration Control Instructions

 Interrupt Instructions

Let us now discuss these instruction sets in detail.

Data Transfer Instructions
These instructions are used to transfer the data from the source operand

to the destination operand. Following are the list of instructions under this

group −

Instruction to transfer a word

 MOV − Used to copy the byte or word from the provided source to the

provided destination.

 PPUSH − Used to put a word at the top of the stack.

 POP − Used to get a word from the top of the stack to the provided location.

 PUSHA − Used to put all the registers into the stack.

 POPA − Used to get words from the stack to all registers.

 XCHG − Used to exchange the data from two locations.

 XLAT − Used to translate a byte in AL using a table in the memory.

Instructions for input and output port transfer

 IN − Used to read a byte or word from the provided port to the accumulator.

 OUT − Used to send out a byte or word from the accumulator to the

provided port.

Instructions to transfer the address

 LEA − Used to load the address of operand into the provided register.

 LDS − Used to load DS register and other provided register from the

memory

 LES − Used to load ES register and other provided register from the

memory.

Instructions to transfer flag registers

 LAHF − Used to load AH with the low byte of the flag register.

 SAHF − Used to store AH register to low byte of the flag register.

 PUSHF − Used to copy the flag register at the top of the stack.

 POPF − Used to copy a word at the top of the stack to the flag register.

Arithmetic Instructions
These instructions are used to perform arithmetic operations like

addition, subtraction, multiplication, division, etc.

Following is the list of instructions under this group −

Instructions to perform addition

 ADD − Used to add the provided byte to byte/word to word.

 ADC − Used to add with carry.

 INC − Used to increment the provided byte/word by 1.

 AAA − Used to adjust ASCII after addition.

 DAA − Used to adjust the decimal after the addition/subtraction operation.

Instructions to perform subtraction

 SUB − Used to subtract the byte from byte/word from word.

 SBB − Used to perform subtraction with borrow.

 DEC − Used to decrement the provided byte/word by 1.

 NPG − Used to negate each bit of the provided byte/word and add 1/2’s

complement.

 CMP − Used to compare 2 provided byte/word.

 AAS − Used to adjust ASCII codes after subtraction.

 DAS − Used to adjust decimal after subtraction.

Instruction to perform multiplication

 MUL − Used to multiply unsigned byte by byte/word by word.

 IMUL − Used to multiply signed byte by byte/word by word.

 AAM − Used to adjust ASCII codes after multiplication.

Instructions to perform division

 DIV − Used to divide the unsigned word by byte or unsigned double word by

word.

 IDIV − Used to divide the signed word by byte or signed double word by

word.

 AAD − Used to adjust ASCII codes after division.

 CBW − Used to fill the upper byte of the word with the copies of sign bit of

the lower byte.

 CWD − Used to fill the upper word of the double word with the sign bit of the

lower word.

Bit Manipulation Instructions
These instructions are used to perform operations where data bits are

involved, i.e. operations like logical, shift, etc.

Following is the list of instructions under this group −

Instructions to perform logical operation

 NOT − Used to invert each bit of a byte or word.

 AND − Used for adding each bit in a byte/word with the corresponding bit in

another byte/word.

 OR − Used to multiply each bit in a byte/word with the corresponding bit in

another byte/word.

 XOR − Used to perform Exclusive-OR operation over each bit in a byte/word

with the corresponding bit in another byte/word.

 TEST − Used to add operands to update flags, without affecting operands.

Instructions to perform shift operations

 SHL/SAL − Used to shift bits of a byte/word towards left and put zero(S) in

LSBs.

 SHR − Used to shift bits of a byte/word towards the right and put zero(S) in

MSBs.

 SAR − Used to shift bits of a byte/word towards the right and copy the old

MSB into the new MSB.

Instructions to perform rotate operations

 ROL − Used to rotate bits of byte/word towards the left, i.e. MSB to LSB and

to Carry Flag [CF].

 ROR − Used to rotate bits of byte/word towards the right, i.e. LSB to MSB

and to Carry Flag [CF].

 RCR − Used to rotate bits of byte/word towards the right, i.e. LSB to CF and

CF to MSB.

 RCL − Used to rotate bits of byte/word towards the left, i.e. MSB to CF and

CF to LSB.

String Instructions
String is a group of bytes/words and their memory is always allocated in

a sequential order.

Following is the list of instructions under this group −

 REP − Used to repeat the given instruction till CX ≠ 0.

 REPE/REPZ − Used to repeat the given instruction until CX = 0 or zero flag

ZF = 1.

 REPNE/REPNZ − Used to repeat the given instruction until CX = 0 or zero

flag ZF = 1.

 MOVS/MOVSB/MOVSW − Used to move the byte/word from one string to

another.

 COMS/COMPSB/COMPSW − Used to compare two string bytes/words.

 INS/INSB/INSW − Used as an input string/byte/word from the I/O port to

the provided memory location.

 OUTS/OUTSB/OUTSW − Used as an output string/byte/word from the

provided memory location to the I/O port.

 SCAS/SCASB/SCASW − Used to scan a string and compare its byte with a

byte in AL or string word with a word in AX.

 LODS/LODSB/LODSW − Used to store the string byte into AL or string

word into AX.

Program Execution Transfer Instructions

(Branch and Loop Instructions)
These instructions are used to transfer/branch the instructions during an

execution. It includes the following instructions −

Instructions to transfer the instruction during an execution without any

condition −

 CALL − Used to call a procedure and save their return address to the stack.

 RET − Used to return from the procedure to the main program.

 JMP − Used to jump to the provided address to proceed to the next

instruction.

Instructions to transfer the instruction during an execution with some

conditions −

 JA/JNBE − Used to jump if above/not below/equal instruction satisfies.

 JAE/JNB − Used to jump if above/not below instruction satisfies.

 JBE/JNA − Used to jump if below/equal/ not above instruction satisfies.

 JC − Used to jump if carry flag CF = 1

 JE/JZ − Used to jump if equal/zero flag ZF = 1

 JG/JNLE − Used to jump if greater/not less than/equal instruction satisfies.

 JGE/JNL − Used to jump if greater than/equal/not less than instruction

satisfies.

 JL/JNGE − Used to jump if less than/not greater than/equal instruction

satisfies.

 JLE/JNG − Used to jump if less than/equal/if not greater than instruction

satisfies.

 JNC − Used to jump if no carry flag (CF = 0)

 JNE/JNZ − Used to jump if not equal/zero flag ZF = 0

 JNO − Used to jump if no overflow flag OF = 0

 JNP/JPO − Used to jump if not parity/parity odd PF = 0

 JNS − Used to jump if not sign SF = 0

 JO − Used to jump if overflow flag OF = 1

 JP/JPE − Used to jump if parity/parity even PF = 1

 JS − Used to jump if sign flag SF = 1

Processor Control Instructions
These instructions are used to control the processor action by

setting/resetting the flag values.

Following are the instructions under this group −

 STC − Used to set carry flag CF to 1

 CLC − Used to clear/reset carry flag CF to 0

 CMC − Used to put complement at the state of carry flag CF.

 STD − Used to set the direction flag DF to 1

 CLD − Used to clear/reset the direction flag DF to 0

 STI − Used to set the interrupt enable flag to 1, i.e., enable INTR input.

 CLI − Used to clear the interrupt enable flag to 0, i.e., disable INTR input.

Iteration Control Instructions
These instructions are used to execute the given instructions for number

of times. Following is the list of instructions under this group −

 LOOP − Used to loop a group of instructions until the condition satisfies, i.e.,

CX = 0

 LOOPE/LOOPZ − Used to loop a group of instructions till it satisfies ZF = 1

& CX = 0

 LOOPNE/LOOPNZ − Used to loop a group of instructions till it satisfies ZF =

0 & CX = 0

 JCXZ − Used to jump to the provided address if CX = 0

Interrupt Instructions
These instructions are used to call the interrupt during program execution.

 INT − Used to interrupt the program during execution and calling service

specified.

 INTO − Used to interrupt the program during execution if OF = 1

 IRET − Used to return from interrupt service to the main program

Interrupt
Interrupt is the method of creating a temporary halt during program

execution and allows peripheral devices to access the microprocessor. The

microprocessor responds to that interrupt with an ISR (Interrupt Service

Routine), which is a short program to instruct the microprocessor on how

to handle the interrupt.

The following image shows the types of interrupts we have in a 8086

microprocessor −

Hardware Interrupts
Hardware interrupt is caused by any peripheral device by sending a signal

through a specified pin to the microprocessor.

The 8086 has two hardware interrupt pins, i.e. NMI and INTR. NMI is a

non-maskable interrupt and INTR is a maskable interrupt having lower

priority. One more interrupt pin associated is INTA called interrupt

acknowledge.

NMI

It is a single non-maskable interrupt pin (NMI) having higher priority

than the maskable interrupt request pin (INTR)and it is of type 2 interrupt.

When this interrupt is activated, these actions take place −

 Completes the current instruction that is in progress.

 Pushes the Flag register values on to the stack.

 Pushes the CS (code segment) value and IP (instruction pointer) value of the

return address on to the stack.

 IP is loaded from the contents of the word location 00008H.

 CS is loaded from the contents of the next word location 0000AH.

 Interrupt flag and trap flag are reset to 0.

INTR

The INTR is a maskable interrupt because the microprocessor will be

interrupted only if interrupts are enabled using set interrupt flag

instruction. It should not be enabled using clear interrupt Flag instruction.

The INTR interrupt is activated by an I/O port. If the interrupt is enabled

and NMI is disabled, then the microprocessor first completes the current

execution and sends ‘0’ on INTA pin twice. The first ‘0’ means INTA informs

the external device to get ready and during the second ‘0’ the

microprocessor receives the 8 bit, say X, from the programmable interrupt

controller.

These actions are taken by the microprocessor −

 First completes the current instruction.

 Activates INTA output and receives the interrupt type, say X.

 Flag register value, CS value of the return address and IP value of the return

address are pushed on to the stack.

 IP value is loaded from the contents of word location X × 4

 CS is loaded from the contents of the next word location.

 Interrupt flag and trap flag is reset to 0

Software Interrupts
Some instructions are inserted at the desired position into the program

to create interrupts. These interrupt instructions can be used to test the

working of various interrupt handlers. It includes −

INT- Interrupt instruction with type number

It is 2-byte instruction. First byte provides the op-code and the second

byte provides the interrupt type number. There are 256 interrupt types

under this group.

Its execution includes the following steps −

 Flag register value is pushed on to the stack.

 CS value of the return address and IP value of the return address are pushed

on to the stack.

 IP is loaded from the contents of the word location ‘type number’ × 4

 CS is loaded from the contents of the next word location.

 Interrupt Flag and Trap Flag are reset to 0

The starting address for type0 interrupt is 000000H, for type1 interrupt

is 00004H similarly for type2 is 00008H and ……so on. The first five

pointers are dedicated interrupt pointers. i.e. −

 TYPE 0 interrupt represents division by zero situation.

 TYPE 1 interrupt represents single-step execution during the debugging of a

program.

 TYPE 2 interrupt represents non-maskable NMI interrupt.

 TYPE 3 interrupt represents break-point interrupt.

 TYPE 4 interrupt represents overflow interrupt.

The interrupts from Type 5 to Type 31 are reserved for other advanced

microprocessors, and interrupts from 32 to Type 255 are available for

hardware and software interrupts.

INT 3-Break Point Interrupt Instruction

It is a 1-byte instruction having op-code is CCH. These instructions are

inserted into the program so that when the processor reaches there, then

it stops the normal execution of program and follows the break-point

procedure.

Its execution includes the following steps −

 Flag register value is pushed on to the stack.

 CS value of the return address and IP value of the return address are pushed

on to the stack.

 IP is loaded from the contents of the word location 3×4 = 0000CH

 CS is loaded from the contents of the next word location.

 Interrupt Flag and Trap Flag are reset to 0

INTO - Interrupt on overflow instruction

It is a 1-byte instruction and their mnemonic INTO. The op-code for this

instruction is CEH. As the name suggests it is a conditional interrupt

instruction, i.e. it is active only when the overflow flag is set to 1 and

branches to the interrupt handler whose interrupt type number is 4. If

the overflow flag is reset then, the execution continues to the next

instruction.

Its execution includes the following steps −

 Flag register values are pushed on to the stack.

 CS value of the return address and IP value of the return address are pushed

on to the stack.

 IP is loaded from the contents of word location 4×4 = 00010H

 CS is loaded from the contents of the next word location.

 Interrupt flag and Trap flag are reset to 0

The different ways in which a source operand is denoted in an instruction

is known as addressing modes. There are 8 different addressing modes

in 8086 programming −

Immediate addressing mode
The addressing mode in which the data operand is a part of the instruction

itself is known as immediate addressing mode.

Example

Register addressing mode
It means that the register is the source of an operand for an instruction.

MOV CX, 4929 H, ADD AX, 2387 H, MOV AL, FFH

Example

Direct addressing mode
The addressing mode in which the effective address of the memory

location is written directly in the instruction.

Example

Register indirect addressing mode
This addressing mode allows data to be addressed at any memory location

through an offset address held in any of the following registers: BP, BX,

DI & SI.

Example

Based addressing mode
In this addressing mode, the offset address of the operand is given by

the sum of contents of the BX/BP registers and 8-bit/16-bit displacement.

Example

Indexed addressing mode
In this addressing mode, the operands offset address is found by adding

the contents of SI or DI register and 8-bit/16-bit displacements.

Example

Based-index addressing mode
In this addressing mode, the offset address of the operand is computed

by summing the base register to the contents of an Index register.

MOV CX, AX ; copies the contents of the 16-bit AX register into
; the 16-bit CX register),

ADD BX, AX

MOV AX, [1592H], MOV AL, [0300H]

MOV AX, [BX] ; Suppose the register BX contains 4895H, then the contents
; 4895H are moved to AX

ADD CX, {BX}

MOV DX, [BX+04], ADD CL, [BX+08]

MOV BX, [SI+16], ADD AL, [DI+16]

Example

Based indexed with displacement mode
In this addressing mode, the operands offset is computed by adding the

base register contents. An Index registers contents and 8 or 16-bit

displacement.

Example

ADD CX, [AX+SI], MOV AX, [AX+DI]

MOV AX, [BX+DI+08], ADD CX, [BX+SI+16]

	Features of 8086
	Comparison between 8085 & 8086 Microprocessor
	Architecture of 8086
	EU (Execution Unit)
	Flag Register
	Conditional Flags
	Control Flags
	General purpose register
	Stack pointer register

	BIU (Bus Interface Unit)
	EU (Execution Unit) (1)
	Flag Register
	Conditional Flags
	Control Flags
	General purpose register
	Stack pointer register

	BIU (Bus Interface Unit) (1)
	8086 Pin Diagram
	Clock signal
	Address/data bus
	Address/status bus
	S7/BHE
	Ready
	RESET
	INTR
	NMI
	INTA
	ALE
	DEN
	DT/R
	M/IO
	WR
	HLDA
	HOLD
	QS1 and QS0
	S0, S1, S2
	LOCK
	RQ/GT1 and RQ/GT0

	Data Transfer Instructions
	Instructions for input and output port transfer
	Instructions to transfer the address
	Instructions to transfer flag registers

	Arithmetic Instructions
	Instructions to perform subtraction
	Instruction to perform multiplication
	Instructions to perform division

	Bit Manipulation Instructions
	Instructions to perform shift operations
	Instructions to perform rotate operations

	String Instructions
	Program Execution Transfer Instructions (Branch and Loop Instructions)
	Processor Control Instructions
	Iteration Control Instructions
	Interrupt Instructions
	Hardware Interrupts
	INTR

	Software Interrupts
	INT 3-Break Point Interrupt Instruction
	INTO - Interrupt on overflow instruction

	Immediate addressing mode
	Register addressing mode
	Direct addressing mode
	Register indirect addressing mode
	Based addressing mode
	Indexed addressing mode
	Based-index addressing mode
	Based indexed with displacement mode

