
Microprocessor and Microcontroller

1.1 Introduction

Microcomputer: The term microcomputer is generally synonymous with

personal computer, or a computer that depends on a microprocessor.

 Microcomputers are designed to be used by individuals, whether in

the form of PCs, workstations or notebook computers.

 A microcomputer contains a CPU on a microchip (the

microprocessor), a memory system (typically ROM and RAM), a bus

system and I/O ports, typically housed in a motherboard.

Microprocessor: A silicon chip that contains a CPU. In the world of personal

computers, the terms microprocessor and CPU are used interchangeably.

 A microprocessor (sometimes abbreviated µP) is a digital electronic

component with miniaturized transistors on a single semiconductor

integrated circuit (IC).

 One or more microprocessors typically serve as a central processing

unit (CPU) in a computer system or handheld device.

 Microprocessors made possible the advent of the microcomputer.

 At the heart of all personal computers and most working stations

sits a microprocessor.

 Microprocessors also control the logic of almost all digital devices,

from clock radios to fuel-injection systems for automobiles.

 Three basic characteristics differentiate microprocessors:

 Instruction set: The set of instructions that the microprocessor can

execute.

 Bandwidth: The number of bits processed in a single instruction.

 Clock speed: Given in megahertz (MHz), the clock speed determines

how many instructions per second the processor can execute.

 In both cases, the higher the value, the more powerful the CPU. For

example, a 32-bit microprocessor that runs at 50MHz is more

powerful than a 16-bit microprocessor that runs at 25MHz.

1

UNIT I – 8085 MICROPROCESSOR

2

 In addition to bandwidth and clock speed, microprocessors are

classified as being either RISC (reduced instruction set computer) or

CISC (complex instruction set computer)

1.2 8085 Microprocessor

The Intel 8085 is an 8-bit microprocessor introduced by Intel in 1977. It

was binary compatible with the more-famous Intel 8080 but required less

supporting hardware, thus allowing simpler and less expensive microcomputer

systems to be built. The "5" in the model number came from the fact that the

8085 requires only a +5-Volt (V) power supply rather than the +5 V, −5 V and

+12 V supplies the 8080 needed. The main features of 8085 μP are:

 It is an 8-bit microprocessor.

 It is manufactured with N-MOS technology.

 It has 16-bit address bus and hence can address up to 216= 65536

bytes (64KB) memory locations through A0–A15.

 The first 8 lines of address bus and 8 lines of data bus are

multiplexed AD0–AD7

 Data bus is a group of 8 lines D0–D7.

 It supports external interrupt request.

 A 16-bit program counter (PC)

 A 16-bit stack pointer (SP)

 Six 8-bit general purpose register arranged in pairs: BC, DE, HL.

 It requires a signal +5V power supply and operates at 3.2 MHZ

single phase clock.

 It is enclosed with 40 pins DIP (Dual in line package).

1.3 8085 Architecture

8085 consists of various units as shown in Fig. 1 and each unit performs its

own functions. The various units of a microprocessor are listed below

 Accumulator

 Arithmetic and logic Unit

 General purpose register

 Program counter

 Stack pointer

 Temporary register

 Flags

 Instruction register and Decoder

Microprocessor and Microcontroller

3

 Timing and Control unit

 Interrupt control

 Address buffer and Address-Data buffer

 Address bus and Data bus

Accumulator

Accumulator is nothing but a register which can hold 8-bit data. Accumulator

aids in storing two quantities. The data to be processed by arithmetic and logic

unit is stored in accumulator. It also stores the result of the operation carried out

by the Arithmetic and Logic unit. The accumulator is also called an 8-bit register.

The accumulator is connected to Internal Data bus and ALU (arithmetic and logic

unit). The accumulator can be used to send or receive data from the Internal Data

bus.

Arithmetic and Logic Unit

There is always a need to perform arithmetic operations like +, -, *, / and to

perform logical operations like AND, OR, NOT etc. So, there is a necessity for

creating a separate unit which can perform such types of operations. These

operations are performed by the Arithmetic and Logic Unit (ALU). ALU performs

these operations on 8-bit data. But these operations cannot be performed unless

we have an input (or) data on which the desired operation is to be performed.

So, from where do these inputs reach the ALU? For this purpose, accumulator is

used. ALU gets its Input from accumulator and temporary register. After

processing the necessary operations, the result is stored back in accumulator.

General Purpose Registers

Apart from accumulator 8085 consists of six special types of registers called

General Purpose Registers. These general-purpose registers are used to hold

data like any other registers. The general-purpose registers in 8085 processors

are B, C, D, E, H and L. Each register can hold 8-bit data. Apart from the above

function these registers can also be used to work in pairs to hold 16-bit data.

They can work in pairs such as B-C, D-E and H-L to store 16-bit data. The H-L pair

works as a memory pointer. A memory pointer holds the address of a particular

memory location. They can store 16-bit address as they work in pair.

4

Fig. 1.1 8085 Architecture

Program Counter and Stack Pointer

Program counter is a special purpose register.

Consider that an instruction is being executed by processor. As soon as the

ALU finished executing the instruction, the processor looks for the next

instruction to be executed. So, there is a necessity for holding the address of the

next instruction to be executed in order to save time. This is taken care by the

program counter. A program counter stores the address of the next instruction

to be executed. In other words, the program counter keeps track of the memory

address of the instructions that are being executed by the microprocessor and

the memory address of the next instruction that is going to be executed.

Microprocessor increments the program whenever an instruction is being

executed, so that the program counter points to the memory address of the next

instruction that is going to be executed. Program counter is a 16-bit register.

Stack pointer is also a 16-bit register which is used as a memory pointer. A

stack is nothing but the portion of RAM (Random access memory).

So, does that mean the stack pointer points to portion of RAM?

Microprocessor and Microcontroller

5

Yes. Stack pointer maintains the address of the last byte that is entered into

stack.

Each time when the data is loaded into stack, Stack pointer gets

decremented. Conversely it is incremented when data is retrieved from stack.

Temporary Register

As the name suggests this register acts as a temporary memory during the

arithmetic and logical operations. Unlike other registers, this temporary register

can only be accessed by the microprocessor and it is completely inaccessible to

programmers. Temporary register is an 8-bit register.

Flags

Flags are nothing but a group of individual Flip-flops. The flags are mainly

associated with arithmetic and logic operations. The flags will show either a

logical (0 or 1) (i.e.) a set or reset depending on the data conditions in

accumulator or various other registers. A flag is actually a latch which can hold

some bits of information. It alerts the processor that some event has taken place.

D7 D6 D5 D4 D3 D2 D1 D0

S Z AC P CY

Fig. 1.2 Flag Register

Intel processors have a set of 5 flags.

1. Carry flag

2. Parity flag

3. Auxiliary carry flag

4. Zero flag

5. Sign flag

Consider two binary numbers.

For example

1100 0000

1000 0000

When we add the above two numbers, a carry is generated in the most

significant bit. The number in the extreme right is least significant bit, while the

number in extreme left is most significant bit. So, a ninth bit is generated due to

the carry. So how to accommodate 9th bit in an 8-bit register?

For this purpose, the Carry flag is used. The carry flag is set whenever a carry

is generated and reset whenever there is no carry. But there is an

6

auxiliary carry flag? What is the difference between the carry flag and auxiliary

carry flag?

Let’s discuss with an example. Consider the two numbers given below

0000 1100

0000 1001

When we add both the numbers a carry is generated in the fourth bit from

the least significant bit. This sets the auxiliary carry flag. When there is no carry,

the auxiliary carry flag is reset. So, whenever there is a carry in the most

significant bit Carry flag is set. While an auxiliary carry flag is set only when a

carry is generated in bits other than the most significant bit.

Parity checks whether it’s even or add parity. This flag returns a 0 if it is

odd parity and returns a 1 if it is an even parity. Sometimes they are also called

as parity bit which is used to check errors while data transmission is carried out.

Zero flag shows whether the output of the operation is 0 or not. If the value

of Zero flag is 0 then the result of operation is not zero. If it is zero the flag returns

value 1.

Sign flag shows whether the output of operation has positive sign or negative

sign. A value 0 is returned for positive sign and 1 is returned for negative sign.

Instruction Register and Decoder

Instruction register is 8-bit register just like every other register of

microprocessor. Consider an instruction. The instruction may be anything like

adding two data's, moving a data, copying a data etc. When such an instruction is

fetched from memory, it is directed to Instruction register. So, the instruction

registers are specifically to store the instructions that are fetched from memory.

There is an Instruction decoder which decodes the information present in the

Instruction register for further processing.

Timing and Control Unit

Timing and control unit is a very important unit as it synchronizes the

registers and flow of data through various registers and other units. This unit

consists of an oscillator and controller sequencer which sends control signals

needed for internal and external control of data and other units. The oscillator

generates two-phase clock signals which aids in synchronizing all the registers

of 8085 microprocessor.

Signals that are associated with Timing and control unit are:

Microprocessor and Microcontroller

7

Control Signals: RD’, WR’, ALE

 ALE is used for provide control signal to synchronize the components

of microprocessor and timing for instruction to perform the

operation.

 RD (Active low) and WR (Active low) are used to indicate whether

the operation is reading the data from memory or writing the data

into memory respectively.

Status Signals: S0, S1, IO/M’

 IO/M (Active low) is used to indicate whether the operation belongs

to the memory or peripherals.

Table 1.1 Status signals and the status of data bus

IO/M’ (Active Low) S1 S2 Data Bus Status (Output)

0 0 0 Halt

0 0 1 Memory WRITE

0 1 0 Memory READ

1 0 1 IO WRITE

1 1 0 IO READ

0 1 1 Op code fetch

1 1 1 Interrupt acknowledge

DMA Signals: HOLD, HLDA, READY

 HOLD: Indicates that another master is requesting the use of the

address and data buses. The CPU, upon receiving the hold request,

will relinquish the use of the bus as soon as the completion of the

current bus transfer. Internal processing can continue. The processor

can regain the bus only after the HOLD is removed. When the HOLD

is acknowledged, the Address, Data RD, WR and IO/M’ lines are tri-

stated.

 HLDA: Hold Acknowledge: Indicates that the CPU has received the

HOLD request and that it will relinquish the bus in the next clock

cycle HLDA goes low after the Hold request is removed. The CPU

takes the bus one half-clock cycle after HLDA goes low.

 READY: This signal synchronizes the fast CPU and the slow memory,

peripherals. If READY is high during a read or write cycle, it indicates

that the memory or peripheral is ready to send or receive

8

data. If READY is low, the CPU will wait an integral number of clock

cycle for READY to go high before completing the read or write cycle.

READY must conform to specified setup and hold times.

Reset Signals: Reset in, Reset Out

RESET IN: A low on this pin;

 Sets the program counter to zero (0000H)

 Resets the interrupt enables and HLDA flip-flops.

 Tri-states the data bus, address bus and control bus.

 Affects the content of processors internal registers randomly.

On Reset, The Program counter sets to 0000h which causes the 8085 to

execute; the first instruction from address 0000H.

 RESET OUT: This active high signal indicates that the processor; is

being reset. This signal is synchronized to the processor clock and it

can be used to reset other devices connected in the system.

Interrupt control

As the name suggests this control interrupts a process. Consider that a

microprocessor is executing the main program. Now whenever the interrupt

signal is enabled or requested the microprocessor shifts the control from main

program to process the incoming request and after the completion of request,

the control goes back to the main program. For example, an Input/output device

may send an interrupt signal to notify that the data is ready for input. The

microprocessor temporarily stops the execution of main program and transfers

control to I/O device. After collecting the input data, the control is transferred

back to main program. Interrupt signals present in 8085 are:

 INTR

 RST 7.5

 RST 6.5

 RST 5.5

 TRAP

INTR is maskable 8080A compatible interrupt. When the interrupt occurs

the processor fetches from the bus one instruction, usually one of these

instructions: One of the 8 RST instructions (RST0 - RST7). The processor saves

current program counter into stack and branches to memory location N * 8

(where N is a 3 - bit number from 0 to 7 supplied with the RST instruction).

Microprocessor and Microcontroller

9

CALL instruction (3-byte instruction). The processor calls the subroutine,

address of which is specified in the second and third bytes of the instruction.

RST5.5 is a maskable interrupt. When this interrupt is received the processor

saves the contents of the PC register into stack and branches to 2CH

(hexadecimal) address.

RST6.5 is a maskable interrupt. When this interrupt is received the processor

saves the contents of the PC register into stack and branches to 34H

(hexadecimal) address.

RST7.5 is a maskable interrupt. When this interrupt is received the processor

saves the contents of the PC register into stack and branches to 3CH

(hexadecimal) address.

TRAP is a non-maskable interrupt. When this interrupt is received the

processor saves the contents of the PC register into stack and branches to 24H

(hexadecimal) address.

All maskable interrupts can be enabled or disabled using EI and DI

instructions. RST5.5, RST6.5 and RST7.5 interrupts can be enabled or disabled

individually using SIM instruction.

Serial Input/output control

The input and output of serial data can be carried out using 2 instructions

in 8085.

 SID-Serial Input Data

 SOD-Serial Output Data

Two more instructions are used to perform serial-parallel conversion

needed for serial I/O devices.

 SIM

 RIM

Address buffer and Address-Data buffer

The contents of the stack pointer and program counter are loaded into the

address buffer and address-data buffer. These buffers are then used to drive the

external address bus and address-data bus. As the memory and I/O chips are

connected to these buses, the CPU can exchange desired data to the memory and

I/O chips.

The address-data buffer is not only connected to the external data bus but

also to the internal data bus which consists of 8-bits. The address data buffer can

both send and receive data from internal data bus.

10

Address bus and Data bus

We know that 8085 is an 8-bit microprocessor. So, the data bus present in

the microprocessor is also 8-bits wide. So, 8-bits of data can be transmitted

from or to the microprocessor. But 8085 processor requires 16-bit address bus

as the memory addresses are 16-bit wide. The 8 most significant bits of the

address are transmitted with the help of address bus and the 8 least significant

bits are transmitted with the help of multiplexed address/data bus. The eight- bit

data bus is multiplexed with the eight least significant bits of address bus. The

address/data bus is time multiplexed. This means for few microseconds, the 8

least significant bits of address are generated, while for next few seconds the

same pin generates the data. This is called Time multiplexing. But there are

situations where there is a need to transmit both data and address

simultaneously. For this purpose, a signal called ALE (address latch enables) is

used. ALE signal holds the obtained address in its latch for a long time until the

data is obtained and so when the microprocessor sends the data next time the

address is also available at the output latch. This technique is called

Address/Data demultiplexing.

1.4 Pin Diagram of 8085

The signals can be grouped as follows

1. Power supply and clock signals

2. Address bus

3. Data bus

4. Control and status signals

5. Interrupts and externally initiated signals

6. Serial I/O ports

Microprocessor and Microcontroller

11

Fig. 1.3 Pin diagram of 8085

Power supply and Clock frequency signals

 Vcc + 5-volt power supply

 Vss Ground

 X1, X2: Crystal or R/C network or LC network connections to set the

frequency of internal clock generator. The frequency is internally

divided by two. Since the basic operating timing frequency is 3 MHz,

a 6 MHz crystal is connected externally.

 CLK (output) – Clock Output is used as the system clock for

peripheral and devices interfaced with the microprocessor.

Data Bus and Address Bus

AD0-AD7:-These are multiplexed address and data bus. So, it can be used to

carry the lower order 8-bit address as well as the data. Generally, these lines are

demultiplexed using the Latch. During the opcode fetch operation, in the first

clock cycle the lines deliver the lower order address bus A0-A7. In the

subsequent IO/M read or write it is used as data bus D0-D7. CPU can read or

write data through these lines. A8-A15:- These are address bus used to address

the memory location.

12

1.5 Instruction Set

The 8085 instruction set can be classified into the following five functional

headings.

Data Transfer Instructions: Includes the instructions that moves (copies)

data between registers or between memory locations and registers. In all data

transfer operations, the content of source register is not altered. Hence the data

transfer is copying operation.

Arithmetic Instructions: Includes the instructions, which performs the

addition, subtraction, increment or decrement operations. The flag conditions

are altered after execution of an instruction in this group.

Logical Instructions: The instructions which performs the logical

operations like AND, OR, EXCLUSIVE-OR, complement, compare and rotate

instructions are grouped under this heading. The flag conditions are altered after

execution of an instruction in this group.

Branching Instructions: The instructions that are used to transfer the

program control from one memory location to another memory location are

grouped under this heading.

Machine Control Instructions: Includes the instructions related to

interrupts and the instruction used to halt program execution.

1.6 Data Transfer Instructions

 These instructions move data between registers, or between

memory and registers.

 These instructions copy data from source to destination.

 While copying, the contents of source are not modified.

Opcode Operand Description

MOV Rd, Rs

M, Rs

Rd, M

Copy from source to destination.

MVI Rd, Data

M, Data

Move immediate 8-bit

LDA 16-bit address Load Accumulator

LDAX B/D Register Pair Load accumulator indirect

LXI Reg. pair, 16-bit data Load register pair immediate

STA 16-bit address Store accumulator direct

STAX Reg. pair Store accumulator indirect

XCHG None Exchange H-L with D-E

13

Microprocessor and Microcontroller

1.7 Arithmetic Instructions

These instructions perform arithmetic operations such as addition,

subtraction, increment, and decrement.

Opcode Operand Description

ADD
R

M
Add register or memory to accumulator

ADC
R

M
Add register or memory to accumulator with carry

ADI 8-bit data Add immediate to accumulator

ACI 8-bit data Add immediate to accumulator with carry

SUB
R

M
Subtract register or memory from accumulator

SUI 8-bit data Subtract immediate from accumulator

INR
R

M
Increment register or memory by 1

INX R Increment register pair by 1

DCR
R

M
Decrement register or memory by 1

DCX R Decrement register pair by 1

1.8 Logical Instructions

These instructions perform various logical operations with the contents of

the accumulator.

Opcode Operand Description

CMP
R

M
Compare register or memory with accumulator

CMP
R

M
Compare register or memory with accumulator

CPI 8-bit data Compare immediate with accumulator

ANA
R

M
Logical AND register or memory with accumulator

ANI 8-bit data Logical AND immediate with accumulator

XRA
R

M
Exclusive OR register or memory with accumulator

ORA
R

M
Logical OR register or memory with accumulator

ORI 8-bit data Logical OR immediate with accumulator

XRA
R

M
Logical XOR register or memory with accumulator

XRI 8-bit data XOR immediate with accumulator

14

1.9 Branching Instructions

This group of instructions alters the sequence of program execution either

conditionally or unconditionally.

Opcode Operand Description

JMP 16-bit address Jump unconditionally

Jx 16-bit address Jump conditionally

1.10 Machine Control Instructions

These instructions control machine functions such as Halt, Interrupt, or do

nothing.

Opcode Operand Description

HLT None Halt

NOP None No operation

EI None
The interrupt enable flip-flop is set and all interrupts are

enabled. No flags are affected.

DI None
The interrupt enable flip-flop is reset and all the interrupts

except the TRAP are disabled. No flags are affected.

SIM None
This is a multipurpose instruction and used to implement the

8085 interrupts 7.5, 6.5, 5.5, and serial data output.

RIM None
This is a multipurpose instruction used to read the status of

interrupts 7.5, 6.5, 5.5 and read serial data input bit.

Fig. 1.4 SIM Instruction

Fig. 1. 5 RIM Instruction

15

Microprocessor and Microcontroller

1.11 Addressing Modes

Every instruction of a program has to operate on a data. The method of

specifying the data to be operated by the instruction is called Addressing. The

8085 has the following 5 different types of addressing.

 Immediate Addressing

 Direct Addressing

 Register Addressing

 Register Indirect Addressing

 Implied Addressing

Immediate Addressing

In immediate addressing mode, the data is specified in the instruction itself.

The data will be a part of the program instruction.

EX. MVI B, 3EH - Move the data 3EH given in the instruction to B register;

LXI SP, 2700H.

Direct Addressing

In direct addressing mode, the address of the data is specified in the

instruction. The data will be in memory. In this addressing mode, the program

instructions and data can be stored in different memory.

EX. LDA 1050H - Load the data available in memory location 1050H in to

accumulator; SHLD 3000H

Register Addressing

In register addressing mode, the instruction specifies the name of the

register in which the data is available.

EX. MOV A, B - Move the content of B register to A register; SPHL; ADD C.

Register Indirect Addressing

In register indirect addressing mode, the instruction specifies the name of

the register in which the address of the data is available. Here the data will be in

memory and the address will be in the register pair.

EX. MOV A, M - The memory data addressed by H L pair is moved to A register.

LDAX B.

Implied Addressing

In implied addressing mode, the instruction itself specifies the data to be

operated. EX. CMA - Complement the content of accumulator; RAL

16

1.12 Timing Diagrams

Timing diagram is the display of initiation of read/write and transfer of data

operations under the control of 3-status signals IO/M’, S1 and S0. Each machine

cycle is composed of many clock cycles. Since, the data and instructions, both are

stored in the memory, the µP performs fetch operation to read the instruction or

data and then execute the instruction. The 3-status signals: IO / M’, S1 and S0 are

generated at the beginning of each machine cycle. The unique combination of

these 3-status signals identifies read or write operation and remain valid for the

duration of the cycle. Thus, time taken by any µP to execute one instruction is

calculated in terms of the clock period. The execution of instruction always

requires read and writes operations to transfer data to or from the µP and

memory or I/O devices. Each read/ write operation constitutes one machine

cycle. Each machine cycle consists of many clock periods/ cycles, called T-states.

Fig. 1.6 Machine cycle showing clock periods

Each and every operation inside the microprocessor is under the control of

the clock cycle. The clock signal determines the time taken by the microprocessor

to execute any instruction. State is defined as the time interval between 2-trailing

or leading edges of the clock. Machine cycle is the time required to transfer data

to or from memory or I/O devices.

The 8085 microprocessor has 5 basic machine cycles. They are

 Opcode fetch cycle (4T)

 Memory read cycle (3 T)

 Memory write cycle (3 T)

 I/O read cycle (3 T)

 I/O write cycle (3 T)

Processor Cycle

The function of the microprocessor is divided into fetch and execute cycle of

any instruction of a program. The program is nothing but number of instructions

stored in the memory in sequence. In the normal process of

Microprocessor and Microcontroller

17

operation, the microprocessor fetches (receives or reads) and executes one

instruction at a time in the sequence until it executes the halt (HLT) instruction.

Thus, an instruction cycle is defined as the time required to fetch and execute

an instruction. For executing any program, basically 2-steps are followed

sequentially with the help of clocks

 Fetch, and

 Execute.

The time taken by the µP in performing the fetch and execute operations

are called fetch and execute cycle. Thus, sum of the fetch and execute cycle is

called the instruction cycle as indicated in Fig.

Instruction Cycle (IC) = Fetch cycle (FC) + Execute Cycle (EC)

Fig. 1.7 Processor cycle

The 1st machine cycle of any instruction is always an Opcode fetch cycle in

which the processor decides the nature of instruction. It is of at least 4-states. It

may go up to 6-states.

In the opcode fetch cycle, the processor comes to know the nature of the

instruction to be executed. The processor during (M1 cycle) puts the program

counter contents on the address bus and reads the opcode of the instruction

through read process. The T1, T2, and T3 clock cycles are used for the basic

memory read operation and the T4 clock and beyond are used for its

interpretation of the opcode. Based on these interpretations, the µP comes to

know the type of additional information/data needed for the execution of the

instruction and accordingly proceeds further for 1 or 2-machine cycle of memory

read and writes.

Instruction Fetch (FC)⇒An instruction of 1 or 2 or 3-bytes is extracted from

the memory locations during the fetch and stored in the µP’s instruction register.

Instruction Execute (EC)⇒The instruction is decoded and translated into

specific activities during the execution phase.

Opcode Fetch

The 1st step in communicating between the microprocessor and memory is

reading from the memory. This reading process is called opcode fetch. The

18

process of opcode fetch operation requires minimum 4-clock cycles T1, T2, T3,

and T4and is the 1st machine cycle (M1) of every instruction. In order to

differentiate between the data byte pertaining to an opcode or an address, the

machine cycle takes help of the status signal IO/ M, S1, and S0. The IO/ M= 0

indicates memory operation and S1 = S0 = 1 indicates Opcode fetch operation.

The opcode fetch machine cycle M1 consists of 4-states (T1, T2, T3, and T4).

The 1st 3-states are used for fetching (transferring) the byte from the memory

and the 4th-state is used to decode it.

Example

Fetch a byte 41H stored at memory location 2105H.

For fetching a byte, the microprocessor must find out the memory location

where it is stored. Then provide condition (control) for data flow from memory

to the microprocessor. The process of data flow and timing diagram of fetch

operation are shown in Figs. 5.3 (a), (b), and (c). The µP fetches opcode of the

instruction from the memory as per the sequence below

 A low IO/ M’ means microprocessor wants to communicate with

memory.

 The µP sends a high on status signal S1 and S0 indicating fetch

operation.

 The µP sends 16-bit address. AD bus has address in 1st clock of

the 1st machine cycle, T1.

 AD7to AD0 address is latched in the external latch when ALE =

1.

 AD bus now can carry data.

 In T2, the RD control signal becomes low to enable the memory

for read operation.

 The memory places opcode on the AD bus

 The data is placed in the data register (DR) and then it is

transferred to IR.

 During T3the RDsignal becomes high and memory is disabled.

Microprocessor and Microcontroller

19

Fig. 1.8 Opcode Fetch

 During T4 the opcode is sent for decoding and decoded in T4.

 The execution is also completed in T4if the instruction is single

byte.

 More machine cycles are essential for 2- or 3-byte instructions.

The 1st machine cycleM1is meant for fetching the opcode. The

machine cycles M2and M3are required either to read/ write data

or address from the memory or I/O devices.

Memory and I/O Read Cycle

The memory read machine cycle is executed by the processor to read a data

byte from memory. The processor takes 3T states to execute this cycle. The

instructions which have more than one-byte word size will use the machine cycle

after the opcode fetch machine cycle.

20

Fig. 1.9 Memory Read Cycle

Fig. 1.10 I/O Read Cycle

The high order address (A15 ⇔A8) and low order address (AD7 ⇔AD0) are

asserted on 1st low going transition of the clock pulse. The timing diagram for

IO/M read are shown in Fig. The A15 ⇔A8 remains valid in T1, T2, and T3

i.e. duration of the bus cycle, but AD7⇔AD0 remains valid only in T1. Since it has

to remain valid for the whole bus cycle, it must be saved for its use in the T2 and

T3. ALE is asserted at the beginning of T1 of each bus cycle and is negated

towards the end of T1. ALE is active during T1 only and is used as the clock pulse

to latch the address (AD7⇔AD0) during T1. The RD’ is asserted near the

beginning of T2. It ends at the end of T3. As soon as the RD’ becomes active, it

forces the memory or I/O port to assert data. RD’ becomes inactive towards the

end of T3, causing the port or memory to terminate the data.

Microprocessor and Microcontroller

21

Memory and I/O Write Cycle

Immediately after the termination of the low order address, at the beginning

of the T2, data is asserted on the address/data bus by the processor. WR’ control

is activated near the start of T2 and becomes inactive at the end of T3. The

processor maintains valid data until after WR’ is terminated. This ensures that

the memory or port has valid data while WR’ is active. It is clear from figures that

for READ bus cycle, the data appears on the bus as a result of activating RD’ and

for the WR’ bus cycle, the time the valid data is on the bus overlaps the time that

the WR’ is active.

Fig. 1.11 Memory Write Cycle

Fig. 1.12 I/O Write Cycle

22

Examples

Opcode fetch MOV B, C.

T1: The 1st clock of 1st machine cycle (M1) makes ALE high indicating

address latch enabled which loads low-order address 00H on AD7⇔AD0 and

high-order address 10H simultaneously on A15 ⇔A8. The address 00H is latched

in T1.

T2: During T2 clock, the microprocessor issues RD control signal to enable

the memory and memory places 41H from 1000H location on the data bus.

T3: During T3, the 41H is placed in the instruction register and RD= 1 (high)

disables signal. It means the memory is disabled in T3 clock cycle. The opcode

cycle is completed by end of T3 clock cycle.

T4: The opcode is decoded in T4 clock and the action as per 41H is taken

accordingly. In other word, the content of C-register is copied in B-register.

Fig. 1.13 Opcode Fetch (MOV B, C)

Timing diagram for STA 526AH

 STA means Store Accumulator -The contents of the accumulator is

stored in the specified address (526A).

 The opcode of the STA instruction is said to be 32H. It is fetched from

the memory 41FFH (see fig). - OF machine cycle

 Then the lower order memory address is read (6A). - Memory Read

Machine Cycle

 Read the higher order memory address (52). -Memory Read Machine

Cycle

 The combination of both the addresses are considered and the

content from accumulator is written in 526A. - Memory Write

Machine Cycle

Microprocessor and Microcontroller

23

 Assume the memory address for the instruction and let the content

of accumulator is C7H. So, C7H from accumulator is now stored in

526A.

Fig. 1.14 Timing Diagram for STA 526AH

Timing diagram for IN C0H

 Fetching the Opcode DBH from the memory 4125H.

 Read the port address C0H from 4126H.

 Read the content of port C0H and send it to the accumulator.

 Let the content of port is 5EH.

24

Fig. 1.15 Timing Diagram for IN C0H

1.13 Assembly Language Programming

An assembly language is a low-level programming language for a computer,

or other programmable device, in which there is a very strong (generally one- to-

one) correspondence between the language and the architecture's machine code

instructions. Each assembly language is specific to a particular computer

architecture, in contrast to most high-level programming languages, which are

generally portable across multiple architectures, but require interpreting or

compiling.

Assembly language is converted into executable machine code by a utility

program referred to as an assembler; the conversion process is referred to as

assembly, or assembling the code.

Assembly language uses a mnemonic to represent each low-level machine

operation or opcode. Some opcodes require one or more operands as part of

the instruction, and most assemblers can take labels and symbols as operands

to represent addresses and constants, instead of hard coding them into the

program.

Microprocessor and Microcontroller

25

What is an Assembler?

An assembler is a software tool - a program -- designed to simplify the task

of writing computer programs. If you have ever written a computer program

directly in a machine-recognizable form such as binary or hexadecimal code, you

will appreciate the advantages of programming in a symbolic assembly language.

Assembly language operation codes (opcodes) are easily remembered (MOV

for move instructions, JMP for jump). You can also symbolically express

addresses and values referenced in the operand field of instructions. Since you

assign these names, you can make them as meaningful as the mnemonics for

the instructions. For example, if your program manipulates a date as data, you

can assign it the symbolic name DATE. If your program contains a set of

instructions used as a timing loop (a set of instructions executed repeatedly until

a specific amount of time has passed), you can name the instruction group

TIMER.

What the Assembler Does

To use the assembler, you first need a source program. The source program

consists of programmer written assembly language instructions. These

instructions are written using mnemonic opcodes and labels. Assembly language

source programs must be in a machine-readable form when passed to the

assembler. TheIntellec development system includes a text editor that will help

you maintain source programs as paper tape files or diskette files. You can then

pass the resulting source program file to the assembler. The assembler program

performs the clerical task of translating symbolic code into object code which can

be executed by the 8080 and 8085 microprocessors. Assembler output consists

of three possible files: the object filecontaining your program translated into

object code; the list file printout of your source code, the assemble generated

object code, and the symbol table; and the symbol-crass- reference file, a listing of

the symbol-cross reference records.

26

Fig. 1.16 Function of an Assembler

Example Programs

1. Statement: Store the data byte 32H into memory location 4000H.

Program 1

MVI A, 32H : Store 32H in the accumulator

STA 4000H : Copy accumulator contents at address 4000H

HLT : Terminate program execution

Program 2

LXI H : Load HL with 4000H

MVI M : Store 32H in memory location pointed by HL register

pair (4000H)

HLT : Terminate program execution

Statement: Exchange the contents of memory locations 2000H and 4000H

Program 1

LDA 2000H : Get the contents of memory location 2000H into

accumulator

MOV B, A : Save the contents into B register

LDA 4000H : Get the contents of memory location 4000H into

accumulator

STA 2000H : Store the contents of accumulator at address 2000H

MOV A, B : Get the saved contents back into A register

STA 4000H : Store the contents of accumulator at address 4000H

Program 2

LXI H 2000H : Initialize HL register pair as a pointer to memory

location

2000H.

Microprocessor and Microcontroller

27

LXI D 4000H : Initialize DE register pair as a pointer to memory

location 4000H.

MOV B, M : Get the contents of memory location 2000H into B

register.

LDAX D : Get the contents of memory location 4000H into A

register.

MOV M, A : Store the contents of A register into memory location

2000H.

4000H.

MOV A, B : Copy the contents of B register into accumulator.

STAX D : Store the contents of A register into memory location

HLT : Terminate program execution.

Sample problem

(4000H) = 14H

(4001H) = 89H

Result = 14H + 89H = 9DH

Source program

LXI H 4000H : HL points 4000H

MOV A, M : Get first operand

INX H : HL points 4001H

ADD M : Add second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H

HLT : Terminate program execution

Statement: Subtract the contents of memory location 4001H from the

memorylocation 2000H and place the result in memory location 4002H.

Program - 4: Subtract two 8-bit numbers

Sample problem

(4000H) = 51H

(4001H) = 19H

Result = 51H - 19H = 38H

Source program

LXI H, 4000H : HL points 4000H

Microprocessor and Microcontroller

28

MOV A, M : Get first operand

INX H : HL points 4001H

SUB M : Subtract second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H.

HLT : Terminate program execution

Applications of Microprocessor in General Life

There are a lot of applications of Microprocessor in general life. Some of the

applications are given below

 Mobile Phones

 Digital Watches

 Washing Machine

 Computer

 Lighting Control

 Traffic Control

 LAPTOP

 Modems

 Power Stations

 Television

 CD Player

 Multimeter

 CRO

 Wave generator

 More applications in medical

2.1 I
n
t
r
o

d
u
c
t
i
o
n

29

	1.1 Introduction
	1.2 8085 Microprocessor
	1.3 8085 Architecture
	Accumulator
	Arithmetic and Logic Unit
	General Purpose Registers
	Fig. 1.1 8085 Architecture
	Temporary Register
	Flags
	Fig. 1.2 Flag Register
	For example
	Instruction Register and Decoder
	Timing and Control Unit
	Status Signals: S0, S1, IO/M’
	Table 1.1 Status signals and the status of data bus
	Reset Signals: Reset in, Reset Out
	Interrupt control
	Serial Input/output control
	Address buffer and Address-Data buffer
	Address bus and Data bus
	1.4 Pin Diagram of 8085
	Fig. 1.3 Pin diagram of 8085
	Data Bus and Address Bus
	1.5 Instruction Set
	1.6 Data Transfer Instructions
	1.7 Arithmetic Instructions
	1.8 Logical Instructions
	1.9 Branching Instructions
	1.10 Machine Control Instructions
	Fig. 1.4 SIM Instruction
	1.11 Addressing Modes
	Immediate Addressing
	Direct Addressing
	Register Addressing
	Register Indirect Addressing
	Implied Addressing
	1.12 Timing Diagrams
	Fig. 1.6 Machine cycle showing clock periods
	Processor Cycle
	Fig. 1.7 Processor cycle
	Opcode Fetch
	Example
	Fig. 1.8 Opcode Fetch
	Memory and I/O Read Cycle
	Fig. 1.9 Memory Read Cycle
	Memory and I/O Write Cycle
	Fig. 1.11 Memory Write Cycle
	Examples
	Fig. 1.13 Opcode Fetch (MOV B, C) Timing diagram for STA 526AH
	Fig. 1.14 Timing Diagram for STA 526AH Timing diagram for IN C0H
	Fig. 1.15 Timing Diagram for IN C0H
	What is an Assembler?
	What the Assembler Does
	Fig. 1.16 Function of an Assembler
	Program 1
	Program 2
	Program 1 (1)
	Program 2 (1)
	Source program
	Sample problem
	Source program (1)
	Applications of Microprocessor in General Life
	2.1 Introduction

