

NEED FOR A COMPARATOR

- (i) In mass production, where components are to be checked at a very fast rate.
- (ii) As laboratory standards from which working or inspection gauges are set and correlated.
- (iii) For inspecting newly purchased gauges.
- (iv) Attached with some machines, comparators can be used as working gauges to prevent work spoilage and. to maintain required tolerances at all stages of manufacturing
- (v) In selective assembly of parts, where parts are graded in three or more groups depending upon their tolerances.

TYPES OF COMPARATOR

- (1) Mechanical comparators
- (2) Pneumatic comparators
- (3) Optical comparators
- (4) Electrical comparators (LVDT)
- (5) Fluid displacement comparators
- (6) Projection comparators
- (7) Multi-check comparators
- (8) Automatic gauging machines

1}DIAL INDICATOR (Dial Gauge)2}Johansson 'Mikrokator'3}Sigma Comparator

Systems of Displacement Amplification used in Mechanical Comparators

Rack and pinion

Cam and gear train

Lever with toothed gear.

Compound levers

Twisted taut strip

Lever combined

Initially, the comparator is adjusted to zero on its dial with a standard job in position as shown in Figure(a). The reading H1 is taken with the help of a plunger. Then the standard job is replaced by the work-piece to be checked and the reading H2 is taken. If H1 and H2 are different, then the change i~ the dimension will be shown on the dial of the comparator. Thus difference is then magnified 1000 to 3000 X to get the clear variation in the standard and actual job.

- In short, Comparator is a device which
- Picks up small variations in dimensions.
- (2) Magnifies it.
- (3) Displays it by using indicating devices, by which comparison can be made with some standard value.

Working dial Gauge

Johansson 'Mikrokator'

Sigma Comparator

 ∂h

- PRINCIPLE
- MECHANICAL OPTICAL TYPE
- ZEISS ULTRA OPTIMETER

PNEUMATIC COMPARATOR

Advantages:

- 1. It is cheaper, simple to operate and the cost is low.
- 2. It is free from mechanical hysteresis and wear.
- 3. The magnification can be obtained as high as 10,000 X.
- 4. The gauging member is not in direct contact with the work.
- 5. Indicating and measuring is done at two different places.
- 6. Tapers and ovality can be easily detected.
- 7. The method is self cleaning due to continuous flow of air through the jets and this
- makes the method ideal to be used on shop floor for online controls.
- **Disadvantages:**
- 1. They are **very sensitive** to temperature and humidity changes.
- 2. The accuracy may be influenced by the surface roughness of the component being
- checked.
- 3. Different gauging heads are needed for different jobs.
- 4. Auxiliary equipments such as air filters, pressure gauges and regulators are needed.
- 5. Non-uniformity of scale is a peculiar aspect of air gauging as the variation of back
- pressure is linear, over only a small range of the orifice size variation.

- PRINCIPLE
- LINEAR VARIABLE
 DIFFERENTIAL
 TRANSFORMER(LVDT)

PRINCIPLE

LINEAR VARIABLE DIFFERENTIAL TRANSFORMER(LVDT)

