

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME: 19EE101-BASIC ELECTRICAL & ELECTRONICS ENGINEERING

I YEAR /I SEMESTER

Unit 5: Linear and Digital Electronics

Topic : Half Adder

GRADUATE ATTRIBUTES

INTRODUCTION TO LOGIC GATES

A logic gate is an idealized model of computation or physical electronic device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output.

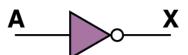
TYPES OF LOGIC GATE

Six types of gates

- •NOT
- •AND
- •OR
- •XOR
- •NAND
- •NOR

Typically, logic diagrams are black and white with gates distinguished only by their shape

NOT GATE


A NOT gate accepts one input signal (0 or 1) and returns the opposite signal as output

Boolean Expression

Logic Diagram Symbol

Truth Table

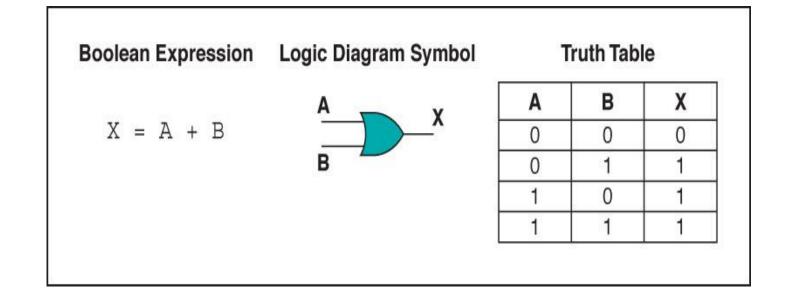
Y	_	Δ	١
Λ	_	A	

Α	X	
0	1	
1	0	

AND GATE

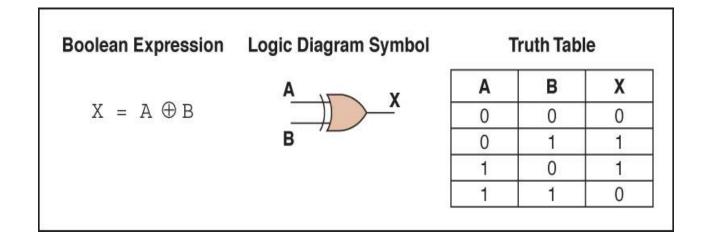
An AND gate accepts two input signals If both are 1, the output is 1; otherwise, the output is 0

Boolean Expression	Logic Diagram Symbol	T	ruth Tabl	е
	A x	Α	В	Х
$X = A \cdot B$	^	0	0	0
	В	0	1	0
		1	0	0
		1	1	1



OR GATE

An OR gate accepts two input signals If both are 0, the output is 0; otherwise, the output is 1



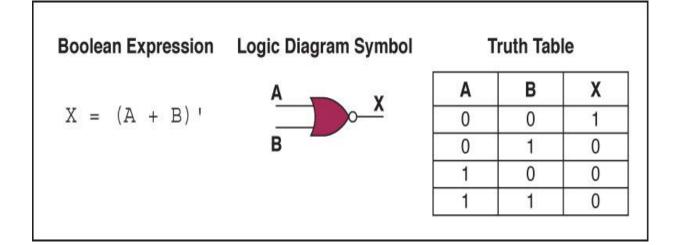
XOR GATE

An XOR gate accepts two input signals If both are the same, the output is 0; Otherwise, the output is 1

NAND GATE

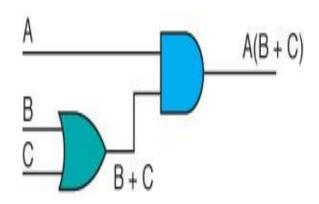
The NAND gate accepts two input signals If both are 1, the output is 0; otherwise,the output is 1

Boolean Expression	Logic Diagram Symbol	Truth Table		
	A X	Α	В	Х
$X = (A \cdot B)'$		0	0	1
	В	0	1	1
		1	0	1
		1	1	0



NOR GATE

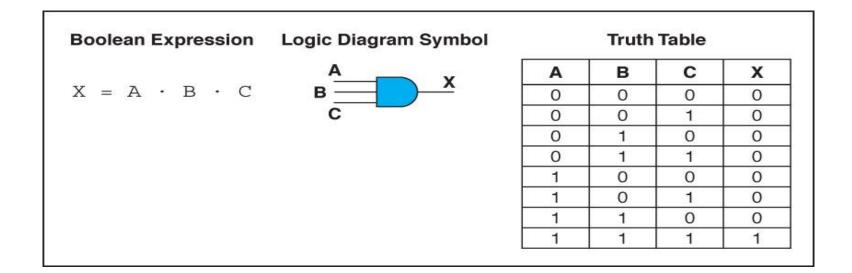
The NOR gate accepts two input signals If both are 0, the output is 1; otherwise, the output is 0



SAMPLE COMBINATIONAL CIRCUIT

Consider the following Boolean expression A(B + C)

Α	В	С	B + C	A(B+C)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1



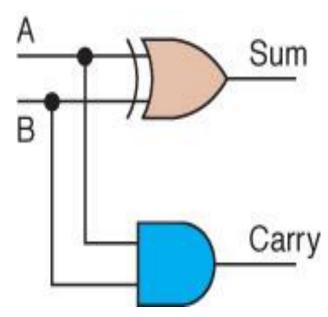
GATES WITH MORE INPUTS

Gates can be designed to accept three or more input values

A three-input AND gate, for example, produces an output of 1 only if all input values are 1

APPLICATION-HALF ADDER

The result of adding two binary digits could produce a carry value


Recall that 1 + 1 = 10 in base two

Half adder

A circuit that computes the sum of two bits and produces the correct carry bit

Circuit diagram representing a half adder Boolean expressions

$$sum = A \oplus B$$
$$carry = AB$$

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

REFERENCES

- 1. Muthusubramanian R, Salivahanan S, "Basic Electrical and Electronics Engineering", Tata McGraw Hill Publishers, (2009) UNIT I V
- 2. Bhattacharya. S.K, "Basic Electrical and Electronics Engineering", Pearson Education, (2017) UNIT I IV
- Mehta V K, Mehta Rohit, "Principles of Electrical Engineering and Electronics",
 S.Chand & Company Ltd, (2010)- UNIT I and II
- 4. Mehta V K, Mehta Rohit, "Principles of Electronics", S.Chand & Company Ltd, (2005)- UNIT IV and V

THANK YOU

