
UNIT

THREADS & CPU SCHEDULNG

UNIT II

THREADS & CPU SCHEDULNG

Threads & CPU Schedulng
• Threads

• Overview

• Multicore Programming

• Multithreading Models

• Implicit Threading

• Threading Issues

• CPU Scheduling

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Threads & CPU Schedulng
CPU Scheduling

• Basic Concepts

• Scheduling Criteria

• Scheduling Algorithms

• Thread Scheduling

• Multiple-Processor Scheduling

• Real-Time CPU Scheduling

Implicit Threading

• Growing in popularity as numbers of threads increase, program correctness

more difficult with explicit threads

• Creation and management of threads done by compilers and run

rather than programmers

• Three methods explored
• Thread Pools
• OpenMP
• Grand Central Dispatch

• Other methods include Microsoft Threading Building Blocks (TBB),

java.util.concurrent package
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Implicit Threading

Growing in popularity as numbers of threads increase, program correctness

Creation and management of threads done by compilers and run-time libraries

Other methods include Microsoft Threading Building Blocks (TBB),

• Create a number of threads in a pool where they await work
• Advantages:

• Usually slightly faster to service a request with an existing thread than create
a new thread

• Allows the number of threads in the application(s) to be bound to the size of
the pool

• Separating task to be performed from mechanics of creating task allows
different strategies for running task

• Windows API supports thread pools:

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Thread Pools

Create a number of threads in a pool where they await work

Usually slightly faster to service a request with an existing thread than create

Allows the number of threads in the application(s) to be bound to the size of

Separating task to be performed from mechanics of creating task allows

Grand Central Dispatch

• Apple technology for Mac OS X and iOS operating systems

• Extensions to C, C++ languages, API, and run

• Allows identification of parallel sections

• Manages most of the details of threading

• Block is in “^{ }” - ˆ{ printf("I am a block"); }

• Blocks placed in dispatch queue

• Assigned to available thread in thread pool when removed from queue

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Grand Central Dispatch

Apple technology for Mac OS X and iOS operating systems

Extensions to C, C++ languages, API, and run-time library

Allows identification of parallel sections

Manages most of the details of threading

ˆ{ printf("I am a block"); }

Assigned to available thread in thread pool when removed from queue

Grand Central Dispatch
• Two types of dispatch queues:

• serial – blocks removed in FIFO order, queue is per process, called

queue

• Programmers can create additional serial queues within program

• concurrent – removed in FIFO order but several may be removed at a time

• Three system wide queues with priorities low, default, high

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Grand Central Dispatch

blocks removed in FIFO order, queue is per process, called main

Programmers can create additional serial queues within program

removed in FIFO order but several may be removed at a time

Three system wide queues with priorities low, default, high

• Semantics of fork() and exec() system calls

• Signal handling

• Synchronous and asynchronous

• Thread cancellation of target thread

• Asynchronous or deferred

• Thread-local storage

• Scheduler Activations

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Threading Issues

system calls

Semantics of fork() and exec()

• Does fork()duplicate only the calling thread or all threads?

• Some UNIXes have two versions of fork

• exec() usually works as normal – replace the running process

including all threads

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Semantics of fork() and exec()

duplicate only the calling thread or all threads?

Some UNIXes have two versions of fork

replace the running process

• Signals are used in UNIX systems to notify a process that a particular event has
occurred.

• A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:

1. default
2. user-defined

• Every signal has default handler that kernel runs when handling signal

• User-defined signal handler can override default

• For single-threaded, signal delivered to process

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Signal Handling

are used in UNIX systems to notify a process that a particular event has

is used to process signals
Signal is generated by particular event

handled by one of two signal handlers:

that kernel runs when handling signal

can override default

threaded, signal delivered to process

Signal Handling (Cont.)

• Where should a signal be delivered for multi

• Deliver the signal to the thread to which the signal applies

• Deliver the signal to every thread in the process

• Deliver the signal to certain threads in the process

• Assign a specific thread to receive all signals for the process

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Signal Handling (Cont.)

Where should a signal be delivered for multi-threaded?

the signal to the thread to which the signal applies

Deliver the signal to every thread in the process

Deliver the signal to certain threads in the process

Assign a specific thread to receive all signals for the process

Thread Cancellation

• Terminating a thread before it has finished

• Thread to be canceled is target thread

• Two general approaches:
• Asynchronous cancellation terminates the target thread immediately
• Deferred cancellation allows the target thread to periodically check if it

should be cancelled

• Pthread code to create and cancel a thread:

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Thread Cancellation

Terminating a thread before it has finished

target thread

terminates the target thread immediately
allows the target thread to periodically check if it

Pthread code to create and cancel a thread:

Thread Cancellation (Cont.)
• Invoking thread cancellation requests cancellation, but actual cancellation

depends on thread state

• If thread has cancellation disabled, cancellation remains pending until thread
enables it

• Default type is deferred
• Cancellation only occurs when thread reaches

• I.e. pthread_testcancel()
• Then cleanup handler is invoked

• On Linux systems, thread cancellation is handled through signals
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Thread Cancellation (Cont.)
Invoking thread cancellation requests cancellation, but actual cancellation

If thread has cancellation disabled, cancellation remains pending until thread

Cancellation only occurs when thread reaches cancellation point

is invoked
On Linux systems, thread cancellation is handled through signals

Thread

• Thread-local storage (TLS) allows each thread to have its own copy of data

• Useful when you do not have control over the thread creation process (i.e., when

using a thread pool)

• Different from local variables

• Local variables visible only during single function invocation

• TLS visible across function invocations

• Similar to static data

• TLS is unique to each thread

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Thread-Local Storage

) allows each thread to have its own copy of data

Useful when you do not have control over the thread creation process (i.e., when

Local variables visible only during single function invocation

TLS visible across function invocations

TEXT BOOK
1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10

Sons, Inc., 2018.

2. Jane W. and S. Liu. “Real-Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3

3. P.C.Bhatt, “An Introduction to Operating Systems–Concepts and Practice",4

REFERENCES

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10th Edition, John Wiley &

Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9th Edition, Prentice Hall of India., 2018.

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3rdEdition, Tata McGraw hill 2016.

Concepts and Practice",4th Edition, Prentice Hall of India., 2013.

THANK YOU

