
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19IT405 DESIGN AND ANALYSIS OF ALGORITHMS

II YEAR /IV SEMESTER

Unit 2- BRUTE FORCE AND DIVIDE-AND-CONQUER

Topic :Brute force and Exhaustive search

Brain Storming

1. What is Algorithm?

2. Why it is important?

21 April 2022 FUNDAMENTALS/PROGRAMMING FOR PROBLEM SOLVING/PRAKASH E.P/CSE/SNSCE 2/49

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 3

Brute Force

• A straightforward approach, usually based directly on the

problem’s statement and definitions of the concepts involved.

• Generally it involved iterating through all possible solutions

until a valid one is found.

Examples – based directly on definitions:

1. Computing an (a > 0, n a nonnegative integer)

2. Computing n!

3. Multiplying two matrices

4. Searching for a key of a given value in a list

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 4

Sorting by Brute Force

Use definition of sorted and obvious algorithm?

Selection Sort Scan the array to find its smallest element and

swap it with the first element. Then, starting with the second

element, scan the elements to the right of it to find the

smallest among them and swap it with the second elements.

Generally, on pass i (0 i n-2), find the smallest element in

A[i..n-1] and swap it with A[i]:

A[0] . . . A[i-1] | A[i], . . . , A[min], . . ., A[n-1]

in their final positions

Example: 7 3 2 5

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 5

Analysis of Selection Sort

Time efficiency: 𝑪 𝒏 =

Space efficiency: ?

Stability:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 6

String Matching by Brute Force

pattern: a string of m characters to search for

text: a (longer) string of n characters to search in

problem: find first substring in text that matches pattern

Brute-force: Scan text LR, compare chars, looking for pattern,

Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character of

pattern to the corresponding character in text until

– all characters are found to match (successful search); or

– a mismatch is detected

Step 3 While pattern is not found and the text is not yet

exhausted, realign pattern one position to the right and

repeat Step 2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 7

Examples of Brute-Force String Matching

Pattern: 001011

Text: 10010101101001100101111010

Pattern: happy

Text: It is never too late to have a happy childhood.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 8

Pseudocode and Efficiency

Efficiency:

(Basic op and dataset assumptions?)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 9

Brute-Force Polynomial Evaluation

Problem: Find the value of polynomial

p(x) = anxn + an-1x
n-1 +… + a1x

1 + a0

at a point x = x0

Brute-force algorithm

Efficiency: A(n)= ?. M(n)=σ𝒊=

p 0.0

for i n downto 0 do

power 1

for j 1 to i do //compute xi

power power x

p p + a[i] power
return p

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 10

Polynomial Evaluation: Improvement

Improve by evaluating from right to left (Horner’s Method):

𝒂𝒙𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅 = 𝒙(𝒙 𝒙 𝒂𝒙 + 𝒃 + 𝒄 + 𝒅

Better brute-force algorithm

Efficiency: A(n)= ?. M(n)=σ𝒊=

p a[0]

power 1

for i 1 to n do

power power x

p p + a[i] power

return p

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 11

Closest-Pair Problem

Find the two closest points in a set of n points (in the two-

dimensional Cartesian plane).

Brute-force algorithm

Compute the distance between every pair of distinct points

and return the indexes of the points for which the distance

is the smallest.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 12

Closest-Pair Brute-Force Algorithm (cont.)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 13

Convex Hull

DEFINITION: Convex

• A set of points (finite or infinite) in the plane is called convex if for any two points

p and q in the set, the entire line segment with the endpoints at p and q belongs to

the set.

DEFINITION: Convex hull

• The convex hull of a set S of points is the smallest convex set containing S. (The

“smallest” requirement means that the convex hull of S must be a subset of any

convex set containing S.)

Uses

• Convex hulls are used in computing accessibility maps produced from satellite

images by Geographic Information Systems.

• They are also used for detecting outliers by some statistical techniques.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 14

Convex Hull

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 15

Convex Hull

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 16

Convex Hull

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 17

Complex Hull

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 18

Convex Hull

❖ Time efficiency of this algorithm.

❖ Time efficiency of this algorithm is in O(n3):

❖ for each of n(n − 1)/2 pairs of distinct points,

❖ we may need to find the sign of ax + by – c for each of the other n − 2 points.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 19

Exhaustive Search

Many Brute Force Algorithms use Exhaustive Search

- Example: Brute force Closest Pair

Approach:

1. Enumerate and evaluate all solutions, and

2. Choose solution that meets some criteria (eg smallest)

Frequently the obvious solution

But, slow (Why?)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 20

Exhaustive Search – More Detail

A brute force solution to a problem involving search for an
element with a special property, usually among combinatorial
objects such as permutations, combinations, or subsets of a
set.

Method:

• generate a list of all potential solutions to the problem in a
systematic manner (see algorithms in Sec. 5.4)

• evaluate potential solutions one by one, disqualifying
infeasible ones and, for an optimization problem, keeping
track of the best one found so far

• when search ends, announce the solution(s) found

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 21

Exhaustive Search – More Examples

Traveling Salesman Problem (TSP)

Knapsack Problem

Assignment Problem

Graph algorithms:

Depth First Search (DFS)

Breadth First Search (BFS)

Better algorithms may exist

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 22

Example 1: Traveling Salesman Problem

Given n cities with known distances between each pair, find the shortest tour that

passes through all the cities exactly once before returning to the starting city

More formally: Find shortest Hamiltonian circuit in a weighted connected graph

Example:

a b

c d

8

2

7

5 3
4

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 23

TSP by Exhaustive Search

Tour Cost

a→b→c→d→a 2+3+7+5 = 17

a→b→d→c→a 2+4+7+8 = 21

a→c→b→d→a 8+3+4+5 = 20

a→c→d→b→a 8+7+4+2 = 21

a→d→b→c→a 5+4+3+8 = 20

a→d→c→b→a 5+7+3+2 = 17

Have we considered all tours?
Do we need to consider more?
Any way to consider fewer?

Efficiency: Number of tours = number of …

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 24

TSP by Exhaustive Search

Tour Cost

a→b→c→d→a 2+3+7+5 = 17

a→b→d→c→a 2+4+7+8 = 21

a→c→b→d→a 8+3+4+5 = 20

a→c→d→b→a 8+7+4+2 = 21

a→d→b→c→a 5+4+3+8 = 20

a→d→c→b→a 5+7+3+2 = 17

Have we considered all tours? Start elsewhere: b-c-d-a-b
Do we need to consider more? No
Any way to consider fewer? Yes: Reverse

Efficiency: # tours = O(# permutations of b,c,d) = O(n!)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 25

Example 2: Knapsack Problem

Given n items:

• weights: w1 w2 … wn

• values: v1 v2 … vn

• a knapsack of capacity W

Find most valuable subset of the items that fit into the knapsack

Example: Knapsack capacity W=16

item weight value

1 2 $20

2 5 $30

3 10 $50

4 5 $10

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 26

Knapsack: Exhaustive Search

Subset Total weight Total value
{1} 2 $20

{2} 5 $30

{3} 10 $50

{4} 5 $10

{1,2} 7 $50

{1,3} 12 $70

{1,4} 7 $30

{2,3} 15 $80

{2,4} 10 $40

{3,4} 15 $60

{1,2,3} 17 not feasible

{1,2,4} 12 $60

{1,3,4} 17 not feasible

{2,3,4} 20 not feasible

{1,2,3,4} 22 not feasible

Efficiency: how

many subsets?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 27

Example 3: The Assignment Problem

There are n people who need to be assigned to n jobs, one person

per job. The cost of assigning person i to job j is C[i,j]. Find an

assignment that minimizes the total cost.

Job 0 Job 1 Job 2 Job 3

Person 0 9 2 7 8

Person 1 6 4 3 7

Person 2 5 8 1 8

Person 3 7 6 9 4

Algorithmic Plan:

Generate all legitimate assignments

Compute costs

Select cheapest

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 28

9 2 7 8

6 4 3 7

5 8 1 8

7 6 9 4

Assignment (col.#s) Total Cost

1, 2, 3, 4 9+4+1+4=18

1, 2, 4, 3 9+4+8+9=30

1, 3, 2, 4 9+3+8+4=24

1, 3, 4, 2 9+3+8+6=26

1, 4, 2, 3 9+7+8+9=33

1, 4, 3, 2 9+7+1+6=23

… …

(For this instance, the optimal assignment can be easily found by exploiting

the specific features of the numbers given. It is:)

Assignment Problem: Exhaustive Search

C =

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 29

9 2 7 8

6 4 3 7

5 8 1 8

7 6 9 4

Assignment (col.#s) Total Cost

1, 2, 3, 4 9+4+1+4=18

1, 2, 4, 3 9+4+8+9=30

1, 3, 2, 4 9+3+8+4=24

1, 3, 4, 2 9+3+8+6=26

1, 4, 2, 3 9+7+8+9=33

1, 4, 3, 2 9+7+1+6=23

… …

(For this instance, the optimal assignment can be easily found by exploiting

the specific features of the numbers given. It is: (2, 1, 3, 4)

Assignment Problem: Exhaustive Search

C =

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 30

Example 3: The Assignment Problem

There are n people who need to be assigned to n jobs, one person

per job. The cost of assigning person i to job j is C[i,j]. Find an

assignment that minimizes the total cost.

Job 0 Job 1 Job 2 Job 3

Person 0 9 2 7 8

Person 1 6 4 3 7

Person 2 5 8 1 8

Person 3 7 6 9 4

Algorithmic Plan: Generate all legitimate assignments, compute

their costs, and select the cheapest one.

How many assignments are there?

Describe sol’n using cost matrix:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 31

Example 3: The Assignment Problem

There are n people who need to be assigned to n jobs, one person

per job. The cost of assigning person i to job j is C[i,j]. Find an

assignment that minimizes the total cost.

Job 0 Job 1 Job 2 Job 3

Person 0 9 2 7 8

Person 1 6 4 3 7

Person 2 5 8 1 8

Person 3 7 6 9 4

Algorithmic Plan: Generate all legitimate assignments, compute

their costs, and select the cheapest one.

How many assignments are there: permutations of 1..n = n!

Sol’n using cost matrix: select one from each row/col. Min sum.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 32

Final Comments on Exhaustive Search

Exhaustive-search algorithms run in a realistic amount of time only on very small

instances

In some cases, there are much better alternatives!

• Euler circuits

• shortest paths

• minimum spanning tree

• assignment problem

In many cases, exhaustive search or its variation is the only known way to get

exact solution

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 33

GRAPHS

Many problem solutions use a graph to represent the data:

- TSP

- Cities and roads

- Network nodes and connections among them

- People and friends

What is a graph? A graph is defined by two sets:

- Set of Vertices

- Set of Edges that connect the vertices

We look at two aspects of graphs:

- Standard graph algorithms (eg DFS and BFS in this chapter)

- Solve some problems with graphs

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 34

Graph Traversal Algorithms

Many problems require processing all graph vertices (and edges) in systematic

fashion

Graph traversal algorithms:

• Depth-first search (DFS): Visit children first

• Breadth-first search (BFS): Visit siblings first

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 35

GRAPHS – Definition Expanded

Graph consists of two sets:

- Set of vertices (aka nodes)

- Set of edges that connect vertices

- Edges may have weights

- Edges may have directions:

- Undirected graph: edges have no directions

- Directed graph: edges have direction

- AKA Digraph

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 36

GRAPH TERMS (Chap 1)

Degree of a node: Number of edges from it (in deg and out deg)

Path: Sequence of vertices that are connected by edges

Cycle: Path that starts and ends at same node

Connected graph:

- every pair of vertices has a path between them

Complete graph:

- every pair of vertices has an edge between them

Tree: connected acyclic graph

- Tree with n nodes has n-1 edges

- Root need not be specified

- Regular terms: Parent, child, ancestors, descendents, siblings, …

Forest: set of trees (ie not-necessarily-connected acyclic graph)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 37

Graph Implementation

Adjacency matrix:

- Row and column for each vertex

- 1 for edge or 0 for no edge

- Undirected graph: What is true of the matrix?

Adjacency lists

- Each node has a list of adjacent nodes

Each has pros and cons. Performance:

- Check if two nodes are adjacent: …

- List all adjacent nodes: …

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 38

Depth-First Search (DFS)

Visits graph’s vertices by always moving away from last

visited vertex to unvisited one

• Backtracks if no adjacent unvisited vertex is available.

Implements backtracking using a stack

• a vertex is pushed when it’s reached for the first time

• a vertex is popped when it becomes a dead end, i.e., when

there are no adjacent unvisited vertices

Marks edges in tree-like fashion (mark edges as tree edges

and back edges [goes back to already discovered ancestor

vertex].

• In a DFS of an undirected graph, each edge becomes either

a tree edge or a back edge (back to ancestor in tree)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 39

Pseudocode of DFS

Stack?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 40

Example: DFS traversal of undirected graph

a b

e f

c d

g h

DFS traversal stack:

a1,

DFS tree:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 41

Example: DFS traversal of undirected graph

a b

e f

c d

g h

Nodes pushed: a b f e g c d h

Nodes popped: e f h d c g b a

Tree Edges: each v in dfs(v) defines a tree edge

Back Edge: encountered edge to previously visited ancestor

What nodes are on the stack?

Complexity:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 42

Notes on DFS

DFS can be implemented with graphs represented as:

• adjacency matrices: Θ(V2)

• adjacency lists: Θ(|V|+|E|)

Yields two distinct ordering of vertices:

• order in which vertices are first encountered (pushed onto stack)

• order in which vertices become dead-ends (popped off stack)

• Orderings and edges used by various algorithms
– (eg scheduling / topological sort)

Applications:

• checking connectivity, finding connected components

• checking acyclicity

• finding articulation points and biconnected components

• searching state-space of problems for solution (AI)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 43

Breadth-first search (BFS)

Visits graph vertices by moving across to all the neighbors of last visited vertex

BFS uses a queue (not a stack like DFS)

Similar to level-by-level tree traversal

Marks edges in tree-like fashion (mark tree edges and cross edges [goes across to

an already discovered sibling vertex]

• In a BFS of an undirected graph, each edge becomes either a tree edge or a

cross edge (to neither ancestor nor descendant in tree-common ancestor or

other tree)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 44

Pseudocode of BFS

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 45

Example of BFS traversal of undirected graph

BFS traversal queue:

a b

e f

c d

g h

BFS tree:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 46

Example of BFS traversal of undirected graph

BFS traversal queue: a, b e f, g, c h, d

Level: 1, 2 2 2, 3, 4 4, 5

Tree Edges: as dfs

Cross Edges: encountered edge to previously visited sibling

or sibling’s descendent (eg hypothetical edge eg)

What nodes are on the queue?

Performance:

a b

e f

c d

g h

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 47

Notes on BFS

BFS has same efficiency as DFS and can be implemented with graphs

represented as:

• adjacency matrices: Θ(V2)

• adjacency lists: Θ(|V|+|E|)

Yields single ordering of vertices (order added/deleted from queue is the same)

Applications: same as DFS, but can also find paths from a vertex to all other

vertices with the smallest number of edges [How: mark depth from root]

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 48

Brute Force: Review

Based on problem statement and definitions

Typically slow, but may be only known algorithm

Useful to consider first

• better algorithm frequently known

Examples:

• Sorting and Searching

• Exhaustive Search:
– Pattern Match, TSP, Knapsack, Assignment,

• Graph (DFS, BFS)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson Education, Inc. Upper Saddle River,

NJ. All Rights Reserved. 49

Brute-Force Strengths and Weaknesses

Strengths

• Wide applicability

• Simplicity

• Yields reasonable algorithms for some important problems
(e.g., matrix multiply, sorting, searching, string matching)

• Algorithm may be good enough for small problem

• Improvement may be too hard

• Provides yardstick for comparison

Weaknesses

• Rarely yields efficient algorithms

• Some brute-force algorithms are unacceptably slow

• Not as constructive as some other design techniques

Assessment 1

1. What is algorithm?

Ans : ___

2. Why algorithm effectiveness is important?

Ans : ___

21 April 2022 FUNDAMENTALS/PROGRAMMING FOR PROBLEM SOLVING/PRAKASH E.P/CSE/SNSCE 50/49

References

Thank You

21 April 2022 FUNDAMENTALS/PROGRAMMING FOR PROBLEM SOLVING/PRAKASH E.P/CSE/SNSCE

TEXT BOOKS

1. Anany Levitin, “Introduction to the Design and Analysis of Algorithms”, Third Edition, Pearson Education, 2012.

REFERENCES

1.Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, “Introduction to Algorithms”, Third Edition,

PHI Learning Private Limited, 2012.

2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, “Data Structures and Algorithms”, Pearson Education, Reprint

2006.

3. Donald E. Knuth, “The Art of Computer Programming”, Volumes 1& 3 Pearson Education, 2009.

4. Steven S. Skiena, “The Algorithm Design Manual”, Second Edition, Springer, 2008.

51/49

