

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19IT405 DESIGN AND ANALYSIS OF ALGORITHMS

II YEAR /IV SEMESTER

Unit 1- INTRODUCTION

Topic 3: Fundamentals of the Analysis of Algorithm Efficiency

Brain Storming

- 1. What is Algorithm?
- 2. Why it is important?

Chapter 2

Fundamentals of the Analysis of Algorithm Efficiency

Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

Analysis of algorithms

Issues:

- correctness
- time efficiency
- space efficiency
- optimality

Approaches:

- theoretical analysis
- empirical analysis

2-4

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of repetitions of the *basic operation* as a function of *input size*

Basic operation: the operation that contributes the most towards the running time of the algorithm

input size

 $T(n) \approx c_{op}C(n)$

running time

execution time for basic operation or cost

Number of times basic operation is executed

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

Input size and basic operation examples

Problem	Input size measure
Searching for key in a list of <i>n</i> items	Number of list's items, i.e. <i>n</i>
Multiplication of two matrices	Matrix dimensions or total number of elements
Checking primality of a given integer <i>n</i>	<i>n</i> 'size = number of digits (in binary representation
Typical graph problem	#vertices and/or edges

Empirical analysis of time efficiency

Select a specific (typical) sample of inputs

Use physical unit of time (e.g., milliseconds) **0**r

Count actual number of basic operation's executions

Analyze the empirical data

2-7

Best-case, average-case, worst-case

For some algorithms, efficiency depends on form of input:

D Worst case: $C_{worst}(n)$ – maximum over inputs of size *n*

 $C_{\text{hest}}(n)$ – minimum over inputs of size *n* **Best case:**

• Average case: $C_{avg}(n)$ – "average" over inputs of size *n*

- Number of times the basic operation will be executed on typical input
- NOT the average of worst and best case
- Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs. So, avg = expected under uniform distribution.

Example: Sequential search

ALGORITHM SequentialSearch(A[0..n-1], K) //Searches for a given value in a given array by sequential search //Input: An array A[0..n - 1] and a search key K //Output: The index of the first element of A that matches K or -1 if there are no matching elements // $i \leftarrow 0$ while i < n and $A[i] \neq K$ do $i \leftarrow i + 1$ if i < n return i

else return -1

Worst case

n key comparisons

Best case

1 comparisons

(n+1)/2, assuming K is in A

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

Types of formulas for basic operation's count

Exact formula e.g., C(n) = n(n-1)/2

Formula indicating order of growth with specific multiplicative constant e.g., $C(n) \approx 0.5 n^2$

Formula indicating order of growth with unknown multiplicative constant e.g., $C(n) \approx cn^2$

Order of growth

- Most important: Order of growth within a constant multiple as $n \rightarrow \infty$
- **Example:**
 - How much faster will algorithm run on computer that is twice as fast?
 - How much longer does it take to solve problem of double ٠ input size?

Values of some important functions as $n \rightarrow \infty$

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^{6}$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^{2}$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^{4}$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^{5}$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^{6}$	1010	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^{7}$	10^{12}	10^{18}		

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

Asymptotic order of growth

A way of comparing functions that ignores constant factors and small input sizes (because?)

 \Box O(g(n)): class of functions f(n) that grow <u>no faster</u> than g(n)

 $\Box \Theta(g(n))$: class of functions f(n) that grow at same rate as g(n)

 $\square \Omega(g(n))$: class of functions f(n) that grow at least as fast as g(n)

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

Copyright © 2007 Pearson Addison-Wesley. All rights reserved: Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

/c₁g(n) ' c₂g(n)

Figure 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$

Ω -notation

Formal definition п

• A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$ $\Omega(g(n))$, if t(n) is bounded below by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

 $t(n) \ge cg(n)$ for all $n \ge n_0$

Θ -notation

Formal definition п

• A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n) \in \mathbb{C}$ $\Theta(g(n))$, if t(n) is bounded both above and below by some positive constant multiples of g(n) for all large *n*, i.e., if there exist some positive constant c_1 and c_2 and some nonnegative integer n₀ such that

 $c_2 g(n) \le t(n) \le c_1 g(n)$ for all $n \ge n_0$

$\Omega(g(n))$, functions that grow <u>at least as fast as</u> g(n)

functions that grow no faster than g(n)

Establishing order of growth using limits

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

- order of growth of T(n) < order of growth of g(n)
- order of growth of T(n) > order of growth of g(n)

L'Hôpital's rule and Stirling's formula

L'Hôpital's rule: If $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$ and the derivatives f', g' exist, then

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{g(n)}{g(n)}$$

Example: log *n* vs. *n* Stirling's formula: $n! \approx (2\pi n)^{1/2} (n/e)^n$

Example: 2^n vs. n!

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

Orders of growth of some important functions

All logarithmic functions $\log_a n$ belong to the same class $\Theta(\log n)$ no matter what the logarithm's base a > 1 is

because $\log_a n = \log_b n / \log_b a$

All polynomials of the same degree k belong to the same class:

$$a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0 \in \Theta(n^k)$$

Exponential functions aⁿ have different orders of growth for different a's

order $\log n < \operatorname{order} n^{\alpha} (\alpha > 0) < \operatorname{order} a^{n} < \operatorname{order} n! < \operatorname{order} n^{n}$

Basic asymptotic efficiency classes

1	constant	
log n	logarithmic	
n	linear	
n log n	<i>n-log-n</i>	
<i>n</i> ²	quadratic	
n ³	cubic	
2 ⁿ	exponential	
<u>n!</u>	factorial	

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

Time efficiency of nonrecursive algorithms

General Plan for Analysis

Decide on parameter *n* **indicating** *input size*

- Identify algorithm's *basic operation*
- Determine *worst*, *average*, and *best* cases for input of size *n*
- Set up a sum for the number of times the basic operation is executed
- **•** Simplify the sum using standard formulas and rules (see **Appendix A**)

Useful summation formulas and rules

 $\sum_{l \le i \le n} 1 = 1 + 1 + \ldots + 1 = n - l + 1$ In particular, $\Sigma_{1 \le i \le n} 1 = n - 1 + 1 = n \in \Theta(n)$

 $\sum_{1 \le i \le n} i = 1 + 2 + \ldots + n = n(n+1)/2 \approx n^2/2 \in \Theta(n^2)$

 $\sum_{1 \le i \le n} i^2 = 1^2 + 2^2 + \ldots + n^2 = n(n+1)(2n+1)/6 \approx n^3/3 \in \Theta(n^3)$

 $\sum_{0 \le i \le n} a^i = 1 + a + \ldots + a^n = (a^{n+1} - 1)/(a - 1)$ for any $a \ne 1$ In particular, $\sum_{0 \le i \le n} 2^i = 2^0 + 2^1 + \ldots + 2^n = 2^{n+1} - 1 \in \Theta(2^n)$

 $\Sigma(a_i \pm b_i) = \Sigma a_i \pm \Sigma b_i \qquad \Sigma ca_i = c\Sigma a_i \qquad \Sigma_{l \le i \le m} a_i = \Sigma_{l \le i \le m} a_i + \Sigma_{m+1 \le i \le m} a_i$

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

Example 1: Maximum element

ALGORITHM MaxElement(A[0..n - 1])//Determines the value of the largest element in a given array //Input: An array A[0..n - 1] of real numbers //Output: The value of the largest element in A $maxval \leftarrow A[0]$ for $i \leftarrow 1$ to n - 1 do if A[i] > maxval $maxval \leftarrow A[i]$ return maxval

$T(n) = \Sigma_{1 \le i \le n-1} 1 = n-1 = \Theta(n)$ comparisons

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

Example 2: Element uniqueness problem

ALGORITHM Unique Elements (A[0..n - 1])//Determines whether all the elements in a given array are distinct //Input: An array A[0..n-1]//Output: Returns "true" if all the elements in A are distinct and "false" otherwise for $i \leftarrow 0$ to n - 2 do for $j \leftarrow i + 1$ to n - 1 do if A[i] = A[j] return false return true

 $T(n) = \Sigma_{0 \leq i \leq n-2} (\Sigma_{i+1 \leq j \leq n-1} 1)$ $= \Sigma_{0 \leq i \leq n-2} n - i - 1 = (n - 1 + 1)(n - 1)/2$ $= \Theta(n^2)$ comparisons

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

Example 3: Matrix multiplication

Matrix Multiplication(A[0..n - 1, 0..n - 1], B[0..n - 1, 0..n - 1])ALGORITHM //Multiplies two *n*-by-*n* matrices by the definition-based algorithm //Input: Two *n*-by-*n* matrices A and B //Output: Matrix C = ABfor $i \leftarrow 0$ to n - 1 do for $j \leftarrow 0$ to n - 1 do $C[i, j] \leftarrow 0.0$ for $k \leftarrow 0$ to n - 1 do $C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]$ return C

 $T(n) = \Sigma_{0 \leq i \leq n-1} \Sigma_{0 \leq i \leq n-1} n$ $= \Sigma 0 \le i \le n - 1 \Theta(n^2)$ $= \Theta(n^3)$ multiplications

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

Example 4: Counting binary digits

ALGORITHM Binary(n)

> //Input: A positive decimal integer n //Output: The number of binary digits in *n*'s binary representation *count* $\leftarrow 1$ while n > 1 do $count \leftarrow count + 1$ $n \leftarrow \lfloor n/2 \rfloor$

return count

It cannot be investigated the way the previous examples are. The halving game: Find integer i such that $n/2^i \leq I$. **Answer:** $i \leq \log n$. So, $T(n) = \Theta(\log n)$ divisions. Another solution: Using recurrence relations.

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

Plan for Analysis of Recursive Algorithms

- Decide on a parameter indicating an input's size.
- **Identify the algorithm's basic operation.**
- **Check whether the number of times the basic op. is executed** may vary on different inputs of the same size. (If it may, the worst, average, and best cases must be investigated separately.)
- Set up a recurrence relation with an appropriate initial condition expressing the number of times the basic op. is executed.
- **Solve the recurrence (or, at the very least, establish its** solution's order of growth) by backward substitutions or another method.

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

Example 1: Recursive evaluation of *n***!**

Definition: n ! = 1 * 2 * ... *(n-1) * n for $n \ge 1$ and 0! = 1

Recursive definition of *n*!: F(n) = F(n-1) * n for $n \ge 1$ and F(0) = 1

ALGORITHM F(n)

> //Computes *n*! recursively //Input: A nonnegative integer n //Output: The value of *n*! if n = 0 return 1

else return F(n-1) * n

Size:

Basic operation: Recurrence relation:

1 multiplication M(n) = M(n-1) + 1M(0) = 0

Solving the recurrence for M(*n*)

M(n) = M(n-1) + 1, M(0) = 0

M(n) = M(n-1) + 1

= (M(n-2) + 1) + 1 = M(n-2) + 2

= (M(n-3) + 1) + 2 = M(n-3) + 3

= M(n-i) + i

= M(0) + n

= n

• • •

The method is called backward substitution.

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

Example 2: The Tower of Hanoi Puzzle

Recurrence for number of moves:

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

M(n) = 2M(n-1) + 1

Solving recurrence for number of moves

M(n) = 2M(n-1) + 1, M(1) = 1

=

M(n) = 2M(n-1) + 1

 $= 2(2M(n-2) + 1) + 1 = 2^2M(n-2) + 2^1 + 2^0$

 $= 2^{2}(2M(n-3) + 1) + 2^{1} + 2^{0}$

 $= 2^{3}M(n-3) + 2^{2} + 2^{1} + 2^{0}$

 $= 2^{(n-1)} M(1) + 2^{(n-2)} + \dots + 2^{1} + 2^{0}$ $=2^{(n-1)}+2^{(n-2)}+\ldots+2^{1}+2^{0}$ $= 2^n - 1$

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

2-34

Tree of calls for the Tower of Hanoi Puzzle

Example 3: Counting #bits

ALGORITHM BinRec(n)

> //Input: A positive decimal integer n //Output: The number of binary digits in *n*'s binary representation if n = 1 return 1 else return $BinRec(\lfloor n/2 \rfloor) + 1$

A(n) = A(|n/2|) + 1, A(1) = 0 $A(2^{k}) = A(2^{k-1}) + 1$, $A(2^{0}) = 1$ (using the Smoothness Rule) $= (A(2^{k-2}) + 1) + 1 = A(2^{k-2}) + 2$ $=A(2^{k-i})+i$ $= A(2^{k-k}) + k = k + 0$ $= \log_2 n$

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 2

2-36

Fibonacci numbers

The Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

The Fibonacci recurrence: F(n) = F(n-1) + F(n-2) $\mathbf{F}(\mathbf{0}) = \mathbf{0}$ F(1) = 1

General 2nd order linear homogeneous recurrence with constant coefficients:

aX(n) + bX(n-1) + cX(n-2) = 0

Decrease-by-a-constant-factor recurrences – Theorem

T(n) = aT(n/b) + f(n), where $f(n) \in \Theta(n^k)$, $k \ge 0$

- $T(n) \in \Theta(n^k)$ $1. \quad a < b^k$ **2.** $a = b^k$ $T(n) \in \Theta(n^k \log n)$ 3. $a > b^k$ $T(n) \in \Theta(n^{\log_b a})$
- **Examples:**
 - T(n) = T(n/2) + 1
 - T(n) = 2T(n/2) + n
 - T(n) = 3T(n/2) + n
 - T(n) = T(n/2) + n

 $\Theta(n)$

The Master

 $\Theta(\log n)$ $\Theta(n \log n)$ $\Theta(n^{\log_2 3})$

2-38

Assessment 1

1. What is algorithm?

Ans :

2. Why algorithm effectiveness is important?

Ans:

References

TEXT BOOKS

- 1. Anany Levitin, "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education, 2012. **REFERENCES**
- 1. Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", Third Edition,
- PHI Learning Private Limited, 2012.
- Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, Reprint 2006.
- 3. Donald E. Knuth, "The Art of Computer Programming", Volumes 1& 3 Pearson Education, 2009.
- 4. Steven S. Skiena, "The Algorithm Design Manual", Second Edition, Springer, 2008.

Thank You

