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Brain Storming

1. What is Algorithm?

2. Why it is important?
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Chapter 2 

Fundamentals of the Analysis 

of Algorithm Efficiency
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Analysis of algorithms

Issues:

• correctness

• time efficiency

• space efficiency

• optimality

Approaches:

• theoretical analysis

• empirical analysis
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Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of 

repetitions of the basic operation as a function of input size

Basic operation: the operation that contributes the most 

towards the running time of the algorithm

T(n) ≈ copC(n)

running time execution time

for basic operation

or cost

Number of times 

basic operation is 

executed

input size

Note: Different basic operations may cost differently!
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Input size and basic operation examples

Problem Input size measure Basic operation

Searching for key in a 

list of n items

Number of list’s items,  

i.e. n
Key comparison

Multiplication of two 

matrices

Matrix dimensions or 

total number of elements

Multiplication of two 

numbers

Checking primality of 

a given integer n

n’size = number of digits 

(in binary representation)
Division

Typical graph problem #vertices and/or edges
Visiting a vertex or 

traversing an edge
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Empirical analysis of time efficiency

Select a specific (typical) sample of inputs

Use physical unit of time (e.g.,  milliseconds)

or

Count actual number of basic operation’s executions

Analyze the empirical data
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Best-case, average-case, worst-case

For some algorithms, efficiency depends on form of input:

Worst case:    Cworst(n) – maximum over inputs of size n

Best case:        Cbest(n) – minimum over inputs of size n

Average case:  Cavg(n) – “average” over inputs of size n

• Number of times the basic operation will be executed on typical  input

• NOT the average of worst and best case

• Expected number of basic operations considered as a random variable 

under some assumption about the probability distribution of all possible 

inputs. So, avg = expected under uniform distribution.
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Example: Sequential search

Worst case

Best case

Average case

n key comparisons

1 comparisons

(n+1)/2, assuming K is in A
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Types of formulas for basic operation’s count

Exact formula

e.g., C(n) = n(n-1)/2

Formula indicating order of growth with specific multiplicative constant

e.g., C(n) ≈ 0.5 n2

Formula indicating order of growth with unknown multiplicative constant

e.g., C(n) ≈ cn2
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Order of growth 

Most important: Order of growth within a constant multiple 

as n→∞

Example:

• How much faster will algorithm run on computer that is 

twice as fast?

• How much longer does it take to solve problem of double 

input size?
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Values of some important functions as n →
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Asymptotic order of growth

A way of comparing functions that ignores constant factors and 

small input sizes (because?)

O(g(n)): class of functions f(n) that grow no faster than g(n)

Θ(g(n)): class of functions f(n) that grow at same rate as g(n)

Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)
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Big-oh
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Big-omega
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Big-theta
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-notation

Formal definition

• A function t(n) is said to be in (g(n)), denoted t(n) 
(g(n)), if t(n) is bounded below by some constant 
multiple of g(n) for all large n, i.e., if there exist some 
positive constant c and some nonnegative integer n0

such that

t(n)  cg(n) for all n  n0
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-notation

Formal definition

• A function t(n) is said to be in (g(n)), denoted t(n) 
(g(n)), if t(n) is bounded both above and below by 
some positive constant multiples of g(n) for all large 
n, i.e., if there exist some positive constant c1 and c2
and some nonnegative integer n0 such that

c2 g(n)  t(n)  c1 g(n) for all n  n0
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(g(n)), functions that grow at least as fast as g(n) 

(g(n)), functions that grow at the same rate as g(n) 

O(g(n)), functions that grow no faster than g(n) 

g(n)

>=

<=

=
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Establishing order of growth using limits

lim T(n)/g(n) = 

0 order of growth of T(n) <  order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

∞ order of growth of T(n) >  order of growth of g(n)

Examples:

• 10n vs.             n2

• n(n+1)/2        vs.             n2

n→∞
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L’Hôpital’s rule and Stirling’s formula

L’Hôpital’s rule:  If limn→ f(n) = limn→ g(n) =  and 

the derivatives f´, g´ exist, then

Stirling’s formula:  n!  (2n)1/2 (n/e)n

f(n)

g(n)
lim
n→

= 
f ´(n)

g ´(n)
lim
n→

Example:  log n vs. n

Example:  2n vs. n!
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Orders of growth of some important functions

All logarithmic functions loga n belong to the same class
(log n) no matter what the logarithm’s base a > 1 is

because  

All polynomials of the same degree k belong to the same class: 

akn
k + ak-1n

k-1 + … + a0  (nk) 

Exponential functions an have different orders of growth for different a’s

order log n  < order n (>0)  < order an < order n! < order nn

ann bba log/loglog =
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Basic asymptotic efficiency classes

1 constant

log n logarithmic

n linear

n log n n-log-n

n2 quadratic

n3 cubic

2n exponential

n! factorial
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Time efficiency of nonrecursive algorithms

General Plan for Analysis

Decide on parameter n indicating input size

Identify algorithm’s basic operation

Determine worst, average, and best cases for input of size n

Set up a sum for the number of times the basic operation is 
executed

Simplify the sum using standard formulas and rules (see 
Appendix A)
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Useful summation formulas and rules

lin1 = 1+1+…+1 = n - l + 1

In particular, lin1 = n - 1 + 1 = n  (n) 

1in i = 1+2+…+n = n(n+1)/2  n2/2  (n2) 

1in i2 = 12+22+…+n2 = n(n+1)(2n+1)/6  n3/3  (n3)

0in ai = 1 + a +…+ an = (an+1 - 1)/(a - 1)  for any a  1

In particular, 0in 2i = 20 + 21 +…+ 2n = 2n+1 - 1  (2n )

(ai ± bi ) = ai ± bi         cai = cai liuai = limai + m+1iuai
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Example 1: Maximum element

T(n) = 1in-1 1 = n-1 = (n) comparisons
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Example 2: Element uniqueness problem

T(n) = 0in-2 (i+1jn-1 1)

= 0in-2 n-i-1 = (n-1+1)(n-1)/2

= (     ) comparisons2n
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Example 3: Matrix multiplication

T(n) = 0in-1 0in-1 n

= 0in-1 ( )

=  ( )   multiplications

2n

3n
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Example 4: Counting binary digits  

It cannot be investigated the way the previous examples are.

The halving game: Find integer i such that n/    ≤ 1.

Answer:  i ≤ log n.     So, T(n) = (log n) divisions.

Another solution: Using recurrence relations.

i2
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Plan for Analysis of Recursive Algorithms

Decide on  a parameter indicating an input’s size.

Identify the algorithm’s basic operation. 

Check whether the number of times the basic op. is executed 
may vary on different inputs of the same size.  (If it may, the 
worst, average, and best cases must be investigated 
separately.)

Set up a recurrence relation with an appropriate initial 
condition expressing the number of times the basic op. is 
executed.

Solve the recurrence (or, at the very least, establish its 
solution’s order of growth) by backward substitutions or 
another method.
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Example 1: Recursive evaluation of n!

Definition: n ! = 1  2  … (n-1)  n for n ≥ 1  and  0! = 1

Recursive definition of n!:  F(n) = F(n-1)  n for n ≥ 1  and  

F(0) = 1

Size:

Basic operation:

Recurrence relation:

n

multiplication

M(n) = M(n-1) + 1

M(0) = 0
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Solving the recurrence for M(n)

M(n) = M(n-1) + 1,  M(0) = 0

M(n) = M(n-1) + 1

= (M(n-2) + 1) + 1   =   M(n-2) + 2

= (M(n-3) + 1) + 2   =   M(n-3) + 3

…

= M(n-i) + i

= M(0) + n

= n

The method is called backward substitution.
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Example 2: The Tower of Hanoi Puzzle

1

2

3

Recurrence for number of moves:
M(n) = 2M(n-1) + 1
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Solving recurrence for number of moves

M(n) = 2M(n-1) + 1,  M(1) = 1

M(n) = 2M(n-1) + 1

= 2(2M(n-2) + 1) + 1 = 2^2*M(n-2) + 2^1 + 2^0

= 2^2*(2M(n-3) + 1) + 2^1 + 2^0 

= 2^3*M(n-3) + 2^2 + 2^1 + 2^0

= …

= 2^(n-1)*M(1) + 2^(n-2) + … + 2^1 + 2^0

= 2^(n-1) + 2^(n-2) + … + 2^1 + 2^0

= 2^n    - 1
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Tree of calls for the Tower of Hanoi Puzzle

       n

n-1 n-1

n-2 n-2 n-2 n-2

1 1

... ... ...
2

1 1

2

1 1

2

1 1

2
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Example 3: Counting #bits

A(     ) = A(        ) + 1,   A(    ) = 1    (using the Smoothness Rule)

= (A(         ) + 1) + 1  = A(         ) + 2

= A(        ) + i

= A(         ) + k = k + 0

= 

k2 12 −k 02

22 −k

n2log

22 −k

ik−2

kk−2

A(n) = A(            ) + 1,   A(1) = 0 2/n
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Fibonacci numbers

The Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, … 

The Fibonacci recurrence:

F(n) = F(n-1) + F(n-2) 

F(0) = 0   

F(1) = 1

General 2nd order linear homogeneous recurrence with 

constant coefficients:

aX(n) + bX(n-1) + cX(n-2) = 0
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Decrease-by-a-constant-factor recurrences – The Master 

Theorem

T(n) = aT(n/b) + f (n), where f (n) ∈ Θ(nk) , k>=0

1. a < bk T(n) ∈ Θ(nk)

2. a = bk T(n) ∈ Θ(nk log n )

3. a > bk T(n) ∈ Θ(nlog a)

Examples:

• T(n) = T(n/2) + 1

• T(n) = 2T(n/2) + n

• T(n) = 3T(n/2) + n

• T(n) = T(n/2) + n

Θ(nlog
2
3)

Θ(log n)

Θ(nlog n)

b

Θ(n)



Assessment 1

1. What is algorithm?

Ans : _______________________________________________________________________

2. Why algorithm effectiveness is important?

Ans : _______________________________________________________________________
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