
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19IT405 DESIGN AND ANALYSIS OF ALGORITHMS

II YEAR /IV SEMESTER

Unit 1- INTRODUCTION

Topic 3:Fundamentals of the Analysis of Algorithm Efficiency

Brain Storming

1. What is Algorithm?

2. Why it is important?

26 February 2022 FUNDAMENTALS/PROGRAMMING FOR PROBLEM SOLVING/PRAKASH E.P/CSE/SNSCE 2/49

Chapter 2

Fundamentals of the Analysis

of Algorithm Efficiency

Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

2-4Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Analysis of algorithms

Issues:

• correctness

• time efficiency

• space efficiency

• optimality

Approaches:

• theoretical analysis

• empirical analysis

2-5Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of

repetitions of the basic operation as a function of input size

Basic operation: the operation that contributes the most

towards the running time of the algorithm

T(n) ≈ copC(n)

running time execution time

for basic operation

or cost

Number of times

basic operation is

executed

input size

Note: Different basic operations may cost differently!

2-6Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Input size and basic operation examples

Problem Input size measure Basic operation

Searching for key in a

list of n items

Number of list’s items,

i.e. n
Key comparison

Multiplication of two

matrices

Matrix dimensions or

total number of elements

Multiplication of two

numbers

Checking primality of

a given integer n

n’size = number of digits

(in binary representation)
Division

Typical graph problem #vertices and/or edges
Visiting a vertex or

traversing an edge

2-7Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Empirical analysis of time efficiency

Select a specific (typical) sample of inputs

Use physical unit of time (e.g., milliseconds)

or

Count actual number of basic operation’s executions

Analyze the empirical data

2-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Best-case, average-case, worst-case

For some algorithms, efficiency depends on form of input:

Worst case: Cworst(n) – maximum over inputs of size n

Best case: Cbest(n) – minimum over inputs of size n

Average case: Cavg(n) – “average” over inputs of size n

• Number of times the basic operation will be executed on typical input

• NOT the average of worst and best case

• Expected number of basic operations considered as a random variable

under some assumption about the probability distribution of all possible

inputs. So, avg = expected under uniform distribution.

2-9Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example: Sequential search

Worst case

Best case

Average case

n key comparisons

1 comparisons

(n+1)/2, assuming K is in A

2-10Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Types of formulas for basic operation’s count

Exact formula

e.g., C(n) = n(n-1)/2

Formula indicating order of growth with specific multiplicative constant

e.g., C(n) ≈ 0.5 n2

Formula indicating order of growth with unknown multiplicative constant

e.g., C(n) ≈ cn2

2-11Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Order of growth

Most important: Order of growth within a constant multiple

as n→∞

Example:

• How much faster will algorithm run on computer that is

twice as fast?

• How much longer does it take to solve problem of double

input size?

2-12Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Values of some important functions as n →

2-13Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Asymptotic order of growth

A way of comparing functions that ignores constant factors and

small input sizes (because?)

O(g(n)): class of functions f(n) that grow no faster than g(n)

Θ(g(n)): class of functions f(n) that grow at same rate as g(n)

Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)

2-14Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Big-oh

2-15Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Big-omega

2-16Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Big-theta

2-17Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

-notation

Formal definition

• A function t(n) is said to be in (g(n)), denoted t(n) 
(g(n)), if t(n) is bounded below by some constant
multiple of g(n) for all large n, i.e., if there exist some
positive constant c and some nonnegative integer n0

such that

t(n)  cg(n) for all n  n0

2-18Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

-notation

Formal definition

• A function t(n) is said to be in (g(n)), denoted t(n) 
(g(n)), if t(n) is bounded both above and below by
some positive constant multiples of g(n) for all large
n, i.e., if there exist some positive constant c1 and c2
and some nonnegative integer n0 such that

c2 g(n)  t(n)  c1 g(n) for all n  n0

2-19Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

(g(n)), functions that grow at least as fast as g(n)

(g(n)), functions that grow at the same rate as g(n)

O(g(n)), functions that grow no faster than g(n)

g(n)

>=

<=

=

2-20Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Establishing order of growth using limits

lim T(n)/g(n) =

0 order of growth of T(n) < order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

∞ order of growth of T(n) > order of growth of g(n)

Examples:

• 10n vs. n2

• n(n+1)/2 vs. n2

n→∞

2-21Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

L’Hôpital’s rule and Stirling’s formula

L’Hôpital’s rule: If limn→ f(n) = limn→ g(n) =  and

the derivatives f´, g´ exist, then

Stirling’s formula: n!  (2n)1/2 (n/e)n

f(n)

g(n)
lim
n→

=
f ´(n)

g ´(n)
lim
n→

Example: log n vs. n

Example: 2n vs. n!

2-22Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Orders of growth of some important functions

All logarithmic functions loga n belong to the same class
(log n) no matter what the logarithm’s base a > 1 is

because

All polynomials of the same degree k belong to the same class:

akn
k + ak-1n

k-1 + … + a0  (nk)

Exponential functions an have different orders of growth for different a’s

order log n < order n (>0) < order an < order n! < order nn

ann bba log/loglog =

2-23Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Basic asymptotic efficiency classes

1 constant

log n logarithmic

n linear

n log n n-log-n

n2 quadratic

n3 cubic

2n exponential

n! factorial

2-24Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Time efficiency of nonrecursive algorithms

General Plan for Analysis

Decide on parameter n indicating input size

Identify algorithm’s basic operation

Determine worst, average, and best cases for input of size n

Set up a sum for the number of times the basic operation is
executed

Simplify the sum using standard formulas and rules (see
Appendix A)

2-25Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Useful summation formulas and rules

lin1 = 1+1+…+1 = n - l + 1

In particular, lin1 = n - 1 + 1 = n  (n)

1in i = 1+2+…+n = n(n+1)/2  n2/2  (n2)

1in i2 = 12+22+…+n2 = n(n+1)(2n+1)/6  n3/3  (n3)

0in ai = 1 + a +…+ an = (an+1 - 1)/(a - 1) for any a  1

In particular, 0in 2i = 20 + 21 +…+ 2n = 2n+1 - 1  (2n)

(ai ± bi) = ai ± bi cai = cai liuai = limai + m+1iuai

2-26Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 1: Maximum element

T(n) = 1in-1 1 = n-1 = (n) comparisons

2-27Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 2: Element uniqueness problem

T(n) = 0in-2 (i+1jn-1 1)

= 0in-2 n-i-1 = (n-1+1)(n-1)/2

= () comparisons2n

2-28Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 3: Matrix multiplication

T(n) = 0in-1 0in-1 n

= 0in-1 ()

= () multiplications

2n

3n

2-29Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 4: Counting binary digits

It cannot be investigated the way the previous examples are.

The halving game: Find integer i such that n/ ≤ 1.

Answer: i ≤ log n. So, T(n) = (log n) divisions.

Another solution: Using recurrence relations.

i2

2-30Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Plan for Analysis of Recursive Algorithms

Decide on a parameter indicating an input’s size.

Identify the algorithm’s basic operation.

Check whether the number of times the basic op. is executed
may vary on different inputs of the same size. (If it may, the
worst, average, and best cases must be investigated
separately.)

Set up a recurrence relation with an appropriate initial
condition expressing the number of times the basic op. is
executed.

Solve the recurrence (or, at the very least, establish its
solution’s order of growth) by backward substitutions or
another method.

2-31Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 1: Recursive evaluation of n!

Definition: n ! = 1  2  … (n-1)  n for n ≥ 1 and 0! = 1

Recursive definition of n!: F(n) = F(n-1)  n for n ≥ 1 and

F(0) = 1

Size:

Basic operation:

Recurrence relation:

n

multiplication

M(n) = M(n-1) + 1

M(0) = 0

2-32Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Solving the recurrence for M(n)

M(n) = M(n-1) + 1, M(0) = 0

M(n) = M(n-1) + 1

= (M(n-2) + 1) + 1 = M(n-2) + 2

= (M(n-3) + 1) + 2 = M(n-3) + 3

…

= M(n-i) + i

= M(0) + n

= n

The method is called backward substitution.

2-33Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 2: The Tower of Hanoi Puzzle

1

2

3

Recurrence for number of moves:
M(n) = 2M(n-1) + 1

2-34Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Solving recurrence for number of moves

M(n) = 2M(n-1) + 1, M(1) = 1

M(n) = 2M(n-1) + 1

= 2(2M(n-2) + 1) + 1 = 2^2*M(n-2) + 2^1 + 2^0

= 2^2*(2M(n-3) + 1) + 2^1 + 2^0

= 2^3*M(n-3) + 2^2 + 2^1 + 2^0

= …

= 2^(n-1)*M(1) + 2^(n-2) + … + 2^1 + 2^0

= 2^(n-1) + 2^(n-2) + … + 2^1 + 2^0

= 2^n - 1

2-35Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Tree of calls for the Tower of Hanoi Puzzle

 n

n-1 n-1

n-2 n-2 n-2 n-2

1 1

...
2

1 1

2

1 1

2

1 1

2

2-36Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 3: Counting #bits

A() = A() + 1, A() = 1 (using the Smoothness Rule)

= (A() + 1) + 1 = A() + 2

= A() + i

= A() + k = k + 0

=

k2 12 −k 02

22 −k

n2log

22 −k

ik−2

kk−2

A(n) = A() + 1, A(1) = 0 2/n

2-37Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Fibonacci numbers

The Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, …

The Fibonacci recurrence:

F(n) = F(n-1) + F(n-2)

F(0) = 0

F(1) = 1

General 2nd order linear homogeneous recurrence with

constant coefficients:

aX(n) + bX(n-1) + cX(n-2) = 0

2-38Copyright © 2007 Pearson Addison-Wesley. All rights reserved.A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Decrease-by-a-constant-factor recurrences – The Master

Theorem

T(n) = aT(n/b) + f (n), where f (n) ∈ Θ(nk) , k>=0

1. a < bk T(n) ∈ Θ(nk)

2. a = bk T(n) ∈ Θ(nk log n)

3. a > bk T(n) ∈ Θ(nlog a)

Examples:

• T(n) = T(n/2) + 1

• T(n) = 2T(n/2) + n

• T(n) = 3T(n/2) + n

• T(n) = T(n/2) + n

Θ(nlog
2
3)

Θ(log n)

Θ(nlog n)

b

Θ(n)

Assessment 1

1. What is algorithm?

Ans : ___

2. Why algorithm effectiveness is important?

Ans : ___

26 February 2022 FUNDAMENTALS/PROGRAMMING FOR PROBLEM SOLVING/PRAKASH E.P/CSE/SNSCE 39/49

References

Thank You

26 February 2022 FUNDAMENTALS/PROGRAMMING FOR PROBLEM SOLVING/PRAKASH E.P/CSE/SNSCE

TEXT BOOKS

1. Anany Levitin, “Introduction to the Design and Analysis of Algorithms”, Third Edition, Pearson Education, 2012.

REFERENCES

1.Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, “Introduction to Algorithms”, Third Edition,

PHI Learning Private Limited, 2012.

2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, “Data Structures and Algorithms”, Pearson Education, Reprint

2006.

3. Donald E. Knuth, “The Art of Computer Programming”, Volumes 1& 3 Pearson Education, 2009.

4. Steven S. Skiena, “The Algorithm Design Manual”, Second Edition, Springer, 2008.

40/49

