s

—3

ﬁ‘

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

LLTTITITIONS

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 191T405 DESIGN AND ANALYSIS OF ALGORITHMS

[YEAR /IV SEMESTER

Unit 1- INTRODUCTION

Topic 3:Fundamentals of the Analysis of Algorithm Efficiency

Brain Storming

(ITTITIO0S

1. What is Algorithm?

2. Why it is important?

26 February 2022 FUNDAMENTALS/PROGRAMMING FOR PROBLEM SOLVING/PRAKASH E.P/CSE/SNSCE 2/49

Chapter 2

introduction to ThE DESign &
2vweomon. Analysis of Algorithms
2ND EDITION

Fundamentals of: the Analysis
oft Algorithm Efficiency

",
e -~ ¢
~ L h-_.'

PEARSON
e

Addison
Wesley Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

Analysis of: algorithms rrr

ISSUES:
COFI-ECtNEsS
time efficiency
SPACE efficiency
optimality

APProaches:
theoretical analysis
empirical analysis

i

2.4

Theoretical'analysis ofi time efficiency. Iyy.

Time efficiency Is analyzed by determining the numier of
repetitions of the basic operation as a function of Input size

BasIC operation: the operation that contributes the most
towards the running time of the algorithm

Input size

T(n) = ¢,,C(N)

running time execution time Number of times
for basic operation basic operation is
or executed

i

2-3

INPUL SiZze and PasIC OPEratiIoN examples
9 9 9 Yy,

\J \/ |
Problem Input size measure Basic operation
Searching for key ina | Number of list’s items, :
: : : Key comparison
ISt of: i 1tems I.E. N
Multiplication ofitwo Matrix dimensions or: Multiplication ofi two
Mmatrices total number of:elements | NUMIEKS
Checking primality of: | n’size = number of digits S
) : o : Division
a given integer n (In' BINary representation)
: : \iSIting a Vertex or
Typical graph problem | #vertices and/or edges :
traversing an ecdge
- m
-
- m 2-6

Empirical analysis o time efficiency. IYy.

Select a specific (typical) sample of inputs
Use physical unit of time (e.g., milliseconds)
OF;

Count actual number of basic operation’s executions

Analyze the empirical data

i

2-7

BEST-Case, aVerage-case, WOKSt-Case FYy,

For some algorithms, efficiency depends on form: o INPLIL:
WWorst cases €, «()— maximum OVEFR INpUts of Size n
Best case: Cl () — MInimum GVEr INPULS ofisize n

Average case: C, () — “average” over inputs of size n
Number ofi times the basic operation will e executed on typical mput
NOI the average of: worst and est case

EXxpected numiber: of: basic operations considered as a random variable
Linder some assumption about the propability distribution of:all poessible
INPULS. SO, avg = expected under uniform distribution.

11

2-8

Example: Sequential’ search

ALGORITHM SequentialSearch(A[0..n — 1], K)
//Searches for a given value in a given array by sequential search
/[Input: An array A[0..n — 1] and a search key K
//Output: The index of the first element of A that matches K
/! or —1 if there are no matching elements

1 — ()

while i < n and Ali] # K do
[«— 1 + 1

if i < nreturn i

else return —1

\\/OISE CasSe
n key comparisons
BESt Case :
1 comparisons
my AVerage case (n+1)/2, assuming K is in A
- 2-9

Types of formulas for basic operation’s count

rrrs

Y \/ |
Exact formula

e.0., C(n) = n(n-1)/2

Formula mdicating order ofi growth With specific multiplicative constant
e.0., C(n) = 0.5 n?

Formula mdicating order offgrowth With unknown multiplicative constant
e.0., C(n) = cn?

11

2-10

Order ol growth rrr

\J \/ |
Most important: Order of: growth within a constant multiple

dS [1—00

Example:

How much faster Will'algorithm runion computer that 1S
twice as fast?

How much longer does It take to solve problem ofidouble
INPUL SIZe?

i

2-11

\/alues of: some important functions as n —> oo

n |log,n n nlog,n n 7 27 7!

10 X0 10 3.3-10 10 10 10 3.6-10°
102 | 6.6 102 6.610° 10¢ 10° 1.3.10% 0.3.10%7
108 | 10 10° 1.010f 108 10°

104 13 104 1.310%5 108 102

10° 17 10 1.710% 1010 1018

109 | 20 105 20107 102 108

Table 2.1 Values (some approximate) of several functions important
for analysis of algorithms

i

2-12

ASYMPLotiC Order: offgrowth Yy,

Y \/ |
A Way of: comparing functions that ignores constant factors and
small' input sizes (because?)
O(g(n)): class off functions f(n) that grow no faster than g(n)
O(g(n)): class ofi functions f(n) that grow at same rate as g(n)
Q(g(n)): class ofi functions fi(n) that grow at least as fast as g(n)
-
-
- 2-13

BIg-00

|
I
|
I
|
|
I
I
|
|
I
J
|
I
|
I
|
I
J
|
|
I
|
|
I
|
|
|
4

0

Figure 2.1 Big-oh notation: #(n) € O(g(n))

i1

2-14

510-0mega PYY,

doesn't
matter

!
|
|
I
I
|
|
|
|
|
I
|
|
|
!
|
I
l
|
|
|
|
|
|
|
|
I
|
4

0

Fig. 2.2 Big-omega notation: t(n) € {g(n))

i1

2-15

Big-theta

doesn't
matter

Figure 2.3 Big-theta notation: ¢(n) € @(g(n))

i1

2-16

O-notation

(17,

Formal definition

A function t(n) 1s said to e 1 Q(g(n)), denoted t(n)
Q(g(n)), It t(n)1s bounded below by some constant
multiple ofi g(n) for all'large n, 1.e., If there exist Some

PosItiVe constant ¢ and Some nonnegative INteger n 0
such that

() = eoi(nr) foir =l nl = nl,

1

2-17

G-notation

(17,

Formal definition

A function t(n) Is said to be i O(g(n)), denoted (n) e
®(g(n)), if-t(n) is bounded both above and below by
Some positive constant multiples ofig(n) for: allilarge

Ny IL€., T there exiSt Some pPositive Constant ¢, and ¢,
and some nonnegative INteger: iy Such that

e, o) =< () =< e oi(nl) e =L nl = nl

1

2-18

rrrs

> =
Q(g(n)), functions that grow at least as fast as g(n)

\ / ()(g(n)), functions that grow at the same rate as g(n)

&/

S
functions that grow no faster than g(n)

2-19

i

Establishing order of: growth using limits
T’y

Yy ¥ W

O order of growth of T(n) < order of growth of g(n)

lim Ti(n)/g(n) = c > 0 order of growth of T(n) = order of growth of g(n)
[1—>00
oo order of growth of T(n) > order of growth of g(n)
Examples:
* 10N VS. N?
s N(N+1)/2 \/S. N?

i

2-20

IL’Hopital’s rule and Stirling’s formula

rrrs

L’Hopital’s rule: If im_ . f(n)=lim. . g(n)=oc ana
the derivatives 7, g exist, then

im i ()

N—>00 g(n) [1—>00 g , (n)

Example: logn vs. n
Stirling’s formula: n! = (27n)Y2 (n/e)"

Example: 27 vs. n!

11

2-21

Orders of: growth of:some important functions

rrys

Y \/ |
Allflogarithmic functions 16g, n belong to the same class
©(log n) no matter what the logarithm’s base a > 1 IS

Pecause
All polynomials ofithe same degree k belong to the same class:

a nN<+a nN<t+... +a, e 0(n
Exponential functions a™ have different orders of growth for different a’s

order log n < order n% (or>0) < order a®™ < order n! < order n"

i

2-22

11

Basic asymptotic efficiency Classes

1 constant
log n logarithmic
n linear

nlogn n-1og-n
N? guadratic
ns cubic
P exponential
n! factorial

rrrs

2-23

Time efficiency off NONEECUESIVE algorithms
rrs

\J \/ |
General Plan for Analysis

[Decide on parameter n indicating Inputsize

Identify algorithm’s basic operation

[Determine worst, average, and hest cases for mnput ofisize n

SEt up a sum for the numer: of: times the PasiC Operation IS
executed

Simplify the stum using standard formulas and rules (see
Appendix A)

2-24

11

11

Usetul summation formulas and rules

Yicienl = 1H1+..+1=n-1+1
In particular, X,...1=n-1+1=n e O(n)

Y= 142+ .40 = n(n+1)/2 = n4/2 e B(n?)

Yo 12 = 154224, 0 .40% = n(n+1)(2n+1)/6 = n°/3 € BO(n°)

Yoicnd =1+a +...+a =(@"- 1f(a-1) forany a1

Z(ai >

In particu

= ;) = 23, =

lar, X2 =20+ 28+, +£20 =20 -1 e B(2")

=20 2R = CXa; i@ = igigm@ T Znii<ixd

rrrs

2-25

Example 1: Maximum element

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
/[Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A

maxval < A[Q]
fori < 1ton —1do
if Ali] > maxval
maxval < Ali]
return maxval

T(n) = Z1<izn-11 = n-1 = G(n) comparisons

i

2-26

Example 2: Element unigueness propiem

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/[Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct

// and “false” otherwise
fori < Oton —2do
for j «<—i+1ton—1do
if A[i]= A[/j] return false
return true

2-27

i

Example 3: Matrix multiplication

ALGORITHM MatrixMultiplication(A[0..n — 1, 0..n — 1], B[0..n — 1, O.n — 1])
//Multiplies two n-by-n matrices by the definition-based algorithm
/[Tnput: Two n-by-n matrices A and B
//Output: Matrix C = AB
fori < Oton —1do

for j «<0ton—1do
Cli, j] < 0.0
fork < Oton 1do
C[i, j] < C[i, j1+ Ali. k] = B[k, j]

return C

2-28

i1

Example 435 Counting inary, digits

ALGORITHM Binary(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in »’s binary representation
count <1
while n > 1 do
count < count + 1
n < |n/2|
return count

It cannot be investigated the way: the previous examples are.

Another solution: Using recurrence relations.

2-29

i

Rlan for Analysis of: Recursive Algorithms
rrs

Decide on a parameter indicating an input’s size.
Identity the algorithm’s basic operation.

Check Whether the numiber: ofi times the basic op. IS executed
may. vary on different inputs of the same size. (Ifit may, the
WOrSt, average, and best cases must be imvestigated
separately.)

SEt Up a recurrence relation with an appropriate initial
condition expressing the numioer ofi times the hasiC op. IS
EXecuted.

Solve the recurrence (or, at the very least, establish Its

solution’s order of growth) by backward substitutions or
another method.

11

2-30

i

Example 1 Recursive evaluation of: n!

Defimition: n =1 2% ... %(N-1)*n forn = 1 and 0! =1

Recursive definition of n': F(n) = Fn-1) *n forn = 1 and
= ()=l
ALGORITHM F(n)

//Computes n! recursively
/[Input: A nonnegative integer n

//Output: The value of n!
if » =0 return 1
elsereturn F(n — 1) xn

SIZE: N

BasIC operation: multiplication

Recurrence relation: M(n) =M(n-1) +1
M) =0

'y

2-31

Solving the recurrence for M(n)
Ty’

Mi(n) = M(n-1)'+ I, M(0)=0

M(n) = M(n-1) + 1

=(M(n-2)+1)+1 = M(n-2)+2
=(M(n-3)+1)+2 = M(n-3) + 3
= M(n-1) + 1
= M(0) +n

=i

The method 1s called

i

2-32

Example 2: Tine Tiower of: Hanoi Puzzie
rry

Recurrence for number: ofi moVes:
M(n) =2M(n-1) + 1

i1

2-33

SOIVING FECUKREENCE for NUMBER Of MOVES
Ty

Mi(n) = 2M(n-1) + 1, M(1) =1
M(n) =2M(n-1) + 1
=2(2M(n-2) + 1) + 1 = 2"2*M(n-2) + 21 + 270
= 2"2*(2M(n-3) + 1) + 21 + 270
= 2"3*M(n-3) + 272 + 21 + 2™0

=2Mn-1)*M(1) + 2*(n-2) + ... + 21 + 270
=2"n-1) + 2*(n-2) + ... + 21 + 270
=2"n -1

i

2-34

Iiree oficalls for the Tower: of: Hanoi Puzzle

i1

2-35

Example s: Counting #oIts

ALGORITHM BinRec(n)

/Input: A positive decimal integer n

//Output: The number of binary digits in n’s binary representation
if n =1return 1
else return BinRec(|n/2|) +1

i

2-36

FIbonacel NUMPErS e

1the Ribonaccl numbers:
0,1,1,2,3,5,8, 13, 21, ...

The Filbonaccer Fecurrence:
F(n) = E(n-1) + E(n-2)
F(0) =0
(1) =1

General 2% order With
constant coefficients:
aXxX(n) + bX(n-1) + cX(n-2) =0

i

2-37

[Decrease-hy-a-constant-factor FECUKFIrENCES — The Master:

Theorem ’, ’, "
T(n) = al(n/b) + (n), where fi(n) € ONY), K>=0
a < X T(n) € O(NY)
a = X T(n) € O(n<log n')
a > b T(n) € O(n'°%%)
Examples:
T(n) = T(n/2) + 1 ©(log n)
T(n) =21 (n/2) +n ©(nlog n)
Ti(n) = 3T(n/2) + n ©(n'09,3)
T(n) = T(n/2) +n ©O(n)

11

2-38

Assessment 1

1. What is algorithm?

Ans:

2. Why algorithm effectiveness is important?

Ans:

26 February 2022 FUNDAMENTALS/PROGRAMMING FOR PROBLEM SOLVING/PRAKASH E.P/CSE/SNSCE 39/49

References -

LLTTITITION S

TEXT BOOKS
1. Anany Levitin, “Introduction to the Design and Analysis of Algorithms”, Third Edition, Pearson Education, 2012.

REFERENCES
1.Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, “Introduction to Algorithms”, Third Edition,

PHI Learning Private Limited, 2012.
2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, “Data Structures and Algorithms”, Pearson Education, Reprint

2006.
3. Donald E. Knuth, “The Art of Computer Programming”, Volumes 1& 3 Pearson Education, 20009.

4. Steven S. Skiena, “The Algorithm Design Manual”, Second Edition, Springer, 2008.

Thank You

26 February 2022 FUNDAMENTALS/PROGRAMMING FOR PROBLEM SOLVING/PRAKASH E.P/CSE/SNSCE 40/49

