
State Based Testing

14/2/20201 IT8076 / Unit 2 / Black Box testing



Where it is useful?
 Useful at situations
 Language Processor
 Workflow Modeling
 Dataflow modeling

14/2/20202/20 IT8076 / Unit 2 / Black Box testing



Example
 Validates a number according to the rules 
 Starts with optional sign
 optional sign followed by any number of digits
 Digits can be optionally followed by a decimal point, 

represented by a period
 Two digits after decimal point
 Whether or not it has decimal, terminated by blank (applies for 

both decimal or not a decimal)

14/2/20203/20 IT8076 / Unit 2 / Black Box testing



 Start from State 1
 State 1 state 2, it may be +/-/digit
 Any alphabet at state 2 error
 Continue until it reaches the final state state 6

14/2/20204/20 IT8076 / Unit 2 / Black Box testing



State Transition Table

14/2/20205/20 IT8076 / Unit 2 / Black Box testing



Language Processor
 Identify the grammar scenario. Represent as state diagram
 Design test cases to each Valid state input combinations
 Design test cases to most common Invalid combinations 

of state inputs

14/2/20206/20 IT8076 / Unit 2 / Black Box testing



Leave Application by an employee
The employee fills up a leave application, giving his
or her employee ID, and start date and end date of
leave required.

This information then goes to an
automated system which validates
that the employee is eligible for the
requisite number of days of leave. If
not, the application is rejected; if the
eligibility exists, then the control flow
passes on to the next step below.

This information goes to the
employee's manager who
validates that it is okay for
the employee to go on leave
during that time

Having satisfied himself/herself with the
feasibility of leave, the manager gives the final
approval or rejection of the leave application.

14/2/20207/20 IT8076 / Unit 2 / Black Box testing



Example

14/2/20208/20 IT8076 / Unit 2 / Black Box testing



Cause – Effect Graphing

14/2/20209 IT8076 / Unit 2 / Black Box testing



Cause and Effect Graphing
 Used to combine conditions and derive an effective set of

test cases that may disclose inconsistencies in a
specification.

 The specification must be transformed into a graph.
 The graph itself must be expressed in a graphical language.
 Developing the graph, especially for a complex module

with many combinations of inputs, is difficult and time
consuming.

 The graph must be converted to a decision table that the
tester uses to develop test cases.

14/2/202010/20 IT8076 / Unit 2 / Black Box testing



Steps in developing test cases with a cause-
and-effect graph
 The tester must decompose the specification of a

complex software component into lower-level units.
 For each specification unit, the tester needs to identify

causes and their effects.
 A cause is distinct input condition or an equivalence class

of input conditions. An effect is an output condition or a
system transformation. Putting together a table of causes
and effects helps the tester to record the necessary
details. The logical relationships between the causes and
effects should be determined. It is useful to express these
in the form of a set of rules.

14/2/202011/20 IT8076 / Unit 2 / Black Box testing



 From the cause-and-effect information, a Boolean cause-
and-effect graph is created. Nodes in the graph are causes
and effects. Causes are placed on the left side of the
graph and effects on the right. Logical relationships are
expressed using standard logical operators such as AND,
OR, and NOT, and are associated with arcs.

 The graph may be annotated with constraints that
describe combinations of causes and/or effects that are
not possible due to environmental or syntactic
constraints.

 The graph is then converted to a decision table.
 The columns in the decision table are transformed into

test cases

14/2/202012/20 IT8076 / Unit 2 / Black Box testing



Example
 Suppose we have a specification for a module that allows

a user to perform a search for a character in an existing
string. The specification states that the user must input
the length of the string and the character to search for. If
the string length is out-of-range an error message will
appear. If the character appears in the string, its position
will be reported. If the character is not in the string the
message “not found” will be output.

14/2/202013/20 IT8076 / Unit 2 / Black Box testing



Example: Cause and effect
 The input conditions, or causes are as follows:
 C1: Positive integer from 1 to 80
 C2: Character to search for is in string

 The output conditions, or effects are:
 E1: Integer out of range
 E2: Position of character in string
 E3: Character not found

14/2/202014/20 IT8076 / Unit 2 / Black Box testing



Example: Logical Relationships

 The rules or relationships can 
be described as follows:
 If C1 and C2, then E2.
 If C1 and not C2, then E3.
 If not C1, then E1.

14/2/202015/20 IT8076 / Unit 2 / Black Box testing



Example: Decision Table
 A decision table will have a row for each cause and each 

effect. 
 The entries are a reflection of the rules and the entities in 

the cause and effect graph. 
 “1” for a cause or effect that is present
 “0” represents the absence of a cause or effect
 “—” indicates a “don’t care” value. 

14/2/202016/20 IT8076 / Unit 2 / Black Box testing



Example: abcde

14/2/202017/20 IT8076 / Unit 2 / Black Box testing



Advantages
 Development of the rules and the graph from the

specification allows a thorough inspection of the
specification. Any omissions, inaccuracies, or
inconsistencies are likely to be detected.

 Exercising combinations of test data that may not be
considered using other black box testing techniques.

14/2/202018/20 IT8076 / Unit 2 / Black Box testing



Problem
 Developing a graph and decision table when there are 

many causes and effects to consider.

14/2/202019/20 IT8076 / Unit 2 / Black Box testing



Thank You

14/2/202020/20 IT8076 / Unit 2 / Black Box testing


