
Unit 2
Test Case Design Strategies

Test case Design Strategies - Using Black Box Approach to Test Case Design -
Boundary Value Analysis - Equivalence Class Partitioning - State based testing
- Cause-effect graphing - Compatibility testing - user documentation testing -
domain testing - Random Testing - Requirements based testing - Using White
Box Approach to Test design - Test Adequacy Criteria - static testing vs.
structural testing - code functional testing - Coverage and Control Flow
Graphs - Covering Code Logic - Paths - code - complexity testing - Additional
White box testing approaches-Evaluating Test Adequacy Criteria.

SMART TESTER
• Design tests that

– reveal defects, and
– can be used to evaluate software performance, usability,

and reliability.

• Plan for testing,
• select the test cases, and
• monitor the process to insure that the resources and

time allocated for the job are utilized effectively.

11/02/2020 2/10IT8076 / Unit 2 / Introdunction

• Novice testers, taking their responsibilities seriously,
might try to test a module or component using all
possible inputs and exercise all possible software
structures.

• The goal of the smart tester is to understand the
functionality, input/output domain, and the
environment of use for the code being tested. For
certain types of testing, the tester must also
understand in detail how the code is constructed

11/02/2020 3/10IT8076 / Unit 2 / Introdunction

• Knowledge of type of defect injected
• Intelligently select the test inputs - greatest

probability of detecting defects
• chose carefully to maximize use of resources

11/02/2020 4/10IT8076 / Unit 2 / Introdunction

TEST CASE DESIGN STRATEGIES

• Effective test case
– a greater probability of detecting defects,
– a more efficient use of organizational resources,
– a higher probability for test reuse
– closer adherence to testing and project schedules

and budgets
– the possibility for delivery of a higher-quality

software product

11/02/2020 5/10IT8076 / Unit 2 / Introdunction

• The smart tester knows that to achieve the goal of
providing users with low-defect, high-quality software,
both of these strategies should be used to design test
cases.

11/02/2020 6/10IT8076 / Unit 2 / Introdunction

RANDOM TESTING

• Randomly selects inputs from the domain
• Valid input domain – 1 to 100 randomly pick

55, 24, 3

11/02/2020 7/10IT8076 / Unit 2 / Introdunction

Issues

• Are the three values adequate to show that the
module meets its specification when the tests are
run? Should additional or fewer values be used to
make the most effective use of resources?

• Are there any input values, other than those
selected, more likely to reveal defects? For example,
should positive integers at the beginning or end of
the domain be specifically selected as inputs?

11/02/2020 8/10IT8076 / Unit 2 / Introdunction

• Should any values outside the valid domain be used
as test inputs? For example, should test data include
floating point values, negative values, or integer
values greater than 100?

11/02/2020 9/10IT8076 / Unit 2 / Introdunction

Thank you

11/02/2020 10/10IT8076 / Unit 2 / Introdunction

