
Software testing axiomsSoftware testing axioms

An Uncontested principle

An axiom is something that is
impossible to prove to be

true but could be disproved
with a single

experiment/example.

30 Jan 2020 IT8076/ Unit I / Axioms 2/27

Software testing axiomsSoftware testing axioms
1. It is impossible to test a program completely.
2. Software testing is a risk-based exercise.
3. Testing cannot show the absence of bugs.
4. The more bugs you find, the more bugs there are.
5. Not all bugs found will be fixed.
6. It is difficult to say when a bug is indeed a bug.
7. Specifications are never final.
8. Software testers are not the most popular members of a

project.
9. Software testing is a disciplined and technical profession.

30 Jan 2020 IT8076/ Unit I / Axioms 3/27

30 Jan 2020 IT8076/ Unit I / Axioms 4/27

It’s impossible to test a program It’s impossible to test a program
completelycompletely

• There are the reasons below:
• The number of possible inputs is very large.
• The number of possible outputs is very large.
• The number of paths through the software is very large.
• The software specification is subjective.

30 Jan 2020 IT8076/ Unit I / Axioms 5/27

• How many test cases do you need to
exhaustively test:
• Powerpoint
• A calculator
• MS Word
• Any interesting software!

• The only way to be absolutely sure
software works is to run it against all
possible inputs and observe all of its
outputs

30 Jan 2020 IT8076/ Unit I / Axioms 6/27

Software testing Software testing
is a riskis a risk--based based

exerciseexercise

30 Jan 2020 IT8076/ Unit I / Axioms 7/27

Software testing is a riskSoftware testing is a risk--bases bases
exerciseexercise

• If you do not test the software for all inputs (a wise choice)
you take a risk.

• Hopefully you will skip a lot of inputs that work correctly.
• What if you skip inputs that cause a fault?

• Risk: financial loss, security, loss of money, loss of life!
• That is a lot of pressure for a tester!

• If you try to test too much, the development cost becomes
prohibitive.

• If you test too little, the probability of software failure
increases

• software failures can cost us big time!

30 Jan 2020 IT8076/ Unit I / Axioms 8/27

Software testing is a riskSoftware testing is a risk--bases bases
exerciseexercise

Every software project has an optimal test effort

30 Jan 2020 IT8076/ Unit I / Axioms 9/27

Testing can’t show that bugs Testing can’t show that bugs
don’t existdon’t exist

• Are there bugs in our
software?

• Are there bugs in other
software?

• Can you guarantee that
there are no bugs to
find?

30 Jan 2020 IT8076/ Unit I / Axioms 10/27

Bugs follow bugsBugs follow bugs

30 Jan 2020 IT8076/ Unit I / Axioms 11/27

Bugs follow bugsBugs follow bugs
• Frequently: find one bug, then find other and

more, Why?
– Programmers have bad days
– Programmers often make the same mistake

– Some bugs are really just the tip of the iceberg

30 Jan 2020 IT8076/ Unit I / Axioms 12/27

• Boris Beizer coined the
term pesticide
paradox to describe
the phenomenon that
the more you test
software the more
immune it becomes to
your test cases.
– Remedy: continually

write new and
different tests to
exercise different parts
of the software

30 Jan 2020 IT8076/ Unit I / Axioms 13/27

30 Jan 2020 IT8076/ Unit I / Axioms

Not
possible

14/27

Not all bugs you find will be fixedNot all bugs you find will be fixed

Why? …..There are several reasons :
• There are not enough time.
• It is really not a bug.
• It is too risk to fix.
• It is just not worth it.

30 Jan 2020 IT8076/ Unit I / Axioms 15/27

There are not enough time

• In every project there are many
software features:
–Too few people to code and test.
–Not enough room to left them
–Must have software in time.

30 Jan 2020 IT8076/ Unit I / Axioms 16/27

It is really not bugIt is really not bug

• It’s common for misunderstandings
• Test errors
• Specification change to result

30 Jan 2020 IT8076/ Unit I / Axioms 17/27

It is too risk to fixIt is too risk to fix

• Software is fragile.
• Sometime is like spaghetti. (inter-twined)
• Under the pressure to release a product under

tight schedule.

It may be better to leave in the know bug to avoid the risk of It may be better to leave in the know bug to avoid the risk of
creating than unknown onescreating than unknown ones

30 Jan 2020 IT8076/ Unit I / Axioms 18/27

It’s just not worth it.It’s just not worth it.

• Bugs that would occur infrequently.
• Bugs that appear in little-used features.
• A user can prevent or avoid the bug.

30 Jan 2020 IT8076/ Unit I / Axioms 19/27

What happens when you make the wrong What happens when you make the wrong
decision?decision?

The Intel Pentium test engineers found bug found bug
before the chip was releasedbefore the chip was released, but the product
team decided that it was such small, rare bug
that it wasn’t worthwasn’t worth fixing. They were under a
tight schedule and decided to meet their
current deadline and fix the bug in later
releases of the chip. Unfortunately, the bug
was discovered and rest.discovered and rest.

30 Jan 2020 IT8076/ Unit I / Axioms 20/27

30 Jan 2020 IT8076/ Unit I / Axioms 21/27

It is difficult to say when a bug It is difficult to say when a bug
is indeed a bugis indeed a bug

• If there is a problem in the software but no
one ever discovers it … is it a bug?
• Parody of “if a tree falls in the forest … does it really

make a noise?”

• What is your opinion? Does a bug have to be
observable in order for it to me a bug?

• Bugs that are undiscovered are called latent
bugs.

30 Jan 2020 IT8076/ Unit I / Axioms 22/27

Specifications are never finalSpecifications are never final

30 Jan 2020 IT8076/ Unit I / Axioms 23/27

Specifications are never finalSpecifications are never final

• Building a product based on a “moving
target” specification is fairly unique to
software development.
• Competition is fierce
• Very rapid release cycles
• Software is “easy” to change

• Not true in other engineering domains
• E.g., the Brooklyn Bridge could not be adjusted to allow

train traffic to cross it once its construction started.

30 Jan 2020 IT8076/ Unit I / Axioms 24/27

Software testers are not the most Software testers are not the most
popular members of a projectpopular members of a project

• Goal of a software tester:
• Find bugs
• Find bugs early
• Make sure bugs get fixed

• Tips to avoid becoming unpopular:
• Find bugs early
• Temper your enthusiasm … act in a professional manner
• Don’t report just the bad news

30 Jan 2020 IT8076/ Unit I / Axioms 25/27

Software testing is a disciplined Software testing is a disciplined
and technical professionand technical profession

• When software was simpler and more manageable software
testers were often untrained and testing was not done
methodically.
– Contrary to the urban legend, if you hire a million moneys

and have them test for a million years … you will not find
all of the bugs in your software.

• It is now too costly to build buggy software. As a result
testing has matured as a discipline.
– Sophisticated techniques
– Tool support
– Rewarding careers

30 Jan 2020 IT8076/ Unit I / Axioms 26/27

Thank you

30 Jan 2020 IT8076/ Unit I / Axioms 27/27

