Deformation in spherical shells
Thin spherical shell expression:
Change in dia, $\delta_{d}=\frac{\mathrm{pd}^{2}}{4 \mathrm{tE}}\left(1-\frac{1}{\mathrm{~m}}\right)$
Problems
Let us solve A thick spherical shell of $\mathbf{2 0 0} \mathbf{~ m m}$ internal diameter is subjected to an internal fluid pressure of $7 \mathrm{~N} / \mathrm{mm}^{2}$. If the permissible tensile stress in the shell material is $8 \mathrm{~N} / \mathrm{mm}^{2}$, find the thickness of the shell.

For thick spherical shell, Lame's equations are:

$$
f_{r}=\frac{2 b}{r^{3}}-a \quad f_{\text {and }}=\frac{b}{r^{3}}+a
$$

Given:

$$
r=\frac{200}{2}=100 \mathrm{~mm}
$$

$\mathrm{f}_{\mathrm{r}}($ at $\mathrm{r}=100 \mathrm{~mm})=7 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{c}}($ at $\mathrm{r}=100 \mathrm{~mm})=8 \mathrm{~N} / \mathrm{mm}^{2}$

Solution:

Substituting these values in Lame's equations,

$$
\begin{align*}
& 7=\frac{2 b}{100^{3}}-a \tag{i}\\
& 8=\frac{b}{(100)^{3}}+a \tag{ii}
\end{align*}
$$

Adding equations (i) and (ii), we get

$$
15=\frac{2 \mathrm{~b}}{100^{3}}+\frac{\mathrm{b}}{100^{3}}
$$

or $15=\frac{3 \mathrm{~b}}{100^{3}}$
$\therefore \mathrm{b}=\frac{100^{3} \times 15}{3}=5 \times 10^{6}$
Substituting this value in equation (i),

$$
7=\frac{2 \times 5 \times 10^{6}}{100^{3}}-\mathrm{a}
$$

Solving, $\mathrm{a}=3$
\therefore Lame's equations are

$$
\begin{gathered}
\mathrm{f}_{\mathrm{r}}=\frac{2 \times 5 \times 10^{6}}{\mathrm{r}^{3}}-3 \text { and } \\
\mathrm{f}_{\mathrm{c}}=\frac{5 \times 10^{6}}{\mathrm{r}^{3}}+3
\end{gathered}
$$

To Find thickness

At outer radius, radial stress, f_{r} is zero
Let $r_{2}=$ outer radius
\therefore at $\mathrm{r}=\mathrm{r}_{2} ; \mathrm{f}_{\mathrm{r}}=0$
Substituting these values, in f_{r} equation,

$$
\begin{array}{rlrl}
& & \mathrm{f}_{\mathrm{r}} & =\frac{2 \mathrm{~b}}{\mathrm{r}_{2}^{3}}-\mathrm{a} \\
\text { i.e., } & \quad 0 & =\frac{2 \times 5 \times 10^{6}}{\mathrm{r}_{2}^{3}}-3 \\
\text { or } & \quad r_{2}^{3} & =\frac{2 \times 5 \times 10^{6}}{3} \\
r_{2} & =\sqrt[3]{\frac{2 \times 5 \times 10^{6}}{3}}=149.3 \mathrm{~mm}
\end{array}
$$

or
\therefore Thickness of shell $=$ Outer radius - Inner radius
$=149.3-100=49.3 \mathrm{~mm}$, say 50 mm

