Deformation in spherical shells

Thin spherical shell expression:

Change in dia,
$$\delta_d = \frac{pd^2}{4tE} \left(1 - \frac{1}{m}\right)$$

Problems

Let us solve A thick spherical shell of 200 mm internal diameter is subjected to an internal fluid pressure of 7 N/mm². If the permissible tensile stress in the shell material is 8 N/mm², find the thickness of the shell.

For thick spherical shell, Lame's equations are:

$$f_r = \frac{2b}{r^3} - a$$
 $f_c = \frac{b}{r^3} + a$

Given:

$$r = \frac{200}{2} = 100 \text{ mm}$$

 f_r (at r = 100 mm) = 7 N/mm²

 f_c (at r = 100 mm) = 8 N/mm²

Solution:

Substituting these values in Lame's equations,

7 =
$$\frac{2b}{100^3} - a$$
(i)
8 = $\frac{b}{(100)^3} + a$ (ii)

Adding equations (i) and (ii), we get

$$15 = \frac{2b}{100^3} + \frac{b}{100^3}$$

or 15 = $\frac{3b}{100^3}$

$$\therefore b = \frac{100^3 \times 15}{3} = 5 \times 10^6$$

Substituting this value in equation (i),

$$7 = \frac{2 \times 5 \times 10^6}{100^3} - a$$

Solving, a = 3

: Lame's equations are

$$f_r = \frac{2 \times 5 \times 10^6}{r^3} - 3$$
 and
$$f_e = \frac{5 \times 10^6}{r^3} + 3$$

To Find thickness

At outer radius, radial stress, fr is zero

Let r_2 = outer radius

 \therefore at r = r₂; f_r = 0

Substituting these values, in f_r equation,

$$f_{r} = \frac{2b}{r_{2}^{3}} - a$$

i.e.,
$$0 = \frac{2 \times 5 \times 10^{6}}{r_{2}^{3}} - 3$$

or
$$r_{2}^{3} = \frac{2 \times 5 \times 10^{6}}{3}$$

or
$$r_{2} = \sqrt[3]{\frac{2 \times 5 \times 10^{6}}{3}} = 149.3 \text{ mm}$$

∴ Thickness of shell = Outer radius – Inner radius

= 149.3 – 100 = 49.3 mm, say 50 mm