Spherical shells subjected to internal pressure

Spherical shell expression

1)Circumferential stress, $\sigma c=\frac{\mathrm{pd}}{4 \mathrm{t}}$
2)Longitudinal stress, $\sigma_{I}=\frac{\frac{\mathrm{pd}}{4 t}}{4 \mathrm{t}}$

Let us derive an expression for change in diameter and volume when a thin spherical shell is subjected to internal pressure.

Consider a thin spherical shell as shown in fig, subjected to an internal pressure.

Let $\mathrm{p}=$ Internal pressure
$d=$ diameter of shell
$t=$ thickness of shell

The force (P) which has a tendency to split the shell $=p \times 4$.

Fig.Thin spherical shell
But the area which is resisting this force $=\pi d t$
\therefore Hoop (or) circumferential stress,

$$
\begin{aligned}
\sigma_{c} & =\frac{\text { Force, } P}{\text { Area resisting the force } P} \\
& =\frac{p \times \frac{\pi}{4} d^{2}}{\pi . \text { d.t }}=\frac{p d}{4 t}
\end{aligned}
$$

Similarly longitudinal stress (i.e., along yy axis)

$$
\sigma_{\ell}=\frac{\mathrm{Pd}}{4 \mathrm{t}}
$$

We know, maximum shear stress $=\frac{\sigma_{\mathrm{c}}-\sigma_{\mathrm{I}}}{2}$

$$
=\frac{\left(\frac{\mathrm{Pd}}{4 \mathrm{t}}\right)-\left(\frac{\mathrm{Pd}}{4 \mathrm{t}}\right)}{2}=.0
$$

i.e., No shear stress. Hence σ_{c} and σ_{1} are acting at right angles to each other.
\therefore Strain in any direction is given by,

$$
\begin{gathered}
e=\frac{\sigma_{c}}{\mathrm{E}}-\frac{\sigma_{1}}{\mathrm{mE}} \\
=\frac{\sigma_{c}}{\mathrm{E}}\left(1-\frac{1}{\mathrm{~m}}\right)_{\left(\because \sigma_{c}=\sigma_{\mathrm{l}}\right)} \\
=\frac{\mathrm{pd}}{4 \mathrm{tE}}\left(1-\frac{1}{\mathrm{~m}}\right) \quad\left(\because \sigma_{\mathrm{c}}=\frac{\mathrm{pd}}{4 \mathrm{t}}\right)
\end{gathered}
$$

We know that, strain in any direction $=\frac{\delta \mathrm{d}}{\mathrm{d}}$

$$
\therefore \quad \frac{\delta \mathrm{d}}{\mathrm{~d}}=\frac{\mathrm{pd}}{4 \mathrm{tE}}\left(1-\frac{1}{\mathrm{~m}}\right)
$$

\therefore Change in diameter,

$$
\begin{equation*}
\delta \mathrm{d}=\frac{\mathrm{pd}^{2}}{4 \mathrm{tE}}\left(1-\frac{1}{\mathrm{~m}}\right) \tag{i}
\end{equation*}
$$

Let, $\mathrm{V}=$ original volume of shell =

$$
\frac{4}{3} \pi r^{3}=\frac{\pi}{6} d^{3}
$$

V1 = Final volume of shell

$$
\begin{aligned}
& =\frac{\pi}{6}\left\{(d+\delta d)^{3}\right\} \\
& =\frac{\pi}{6}\left\{d^{3}+3 d^{2} \delta d\right\}
\end{aligned}
$$

(second and higher power of $\delta \mathrm{d}$ are neglected).
\therefore Change in volume, $\delta v=\mathrm{V}_{1}-\mathrm{V}$

$$
\begin{aligned}
& =\frac{\pi}{6}\left\{d^{3}+3 d^{2} \delta d\right\}-\frac{\pi}{6} d^{3} \\
& =\frac{\pi}{6}\left\{d^{3}+3 d^{2} \delta d-d^{3}\right\} \\
& =\frac{\pi}{6}\left\{3 d^{2} \delta d\right\}
\end{aligned}
$$

To write δv in terms of p, t and E :

We know, Volumetric strain, ev $=\frac{\delta v}{\mathrm{~V}}$

$$
\begin{aligned}
\therefore \quad \frac{\delta v}{V} & =\frac{\frac{\pi}{6}\left(3 \mathrm{~d}^{2} \delta d\right)}{\frac{\pi}{6} \mathrm{~d}^{3}} \\
& =\frac{3 \delta d}{d}
\end{aligned}
$$

Now substituting eqn. (i), we get,

$$
\begin{aligned}
\frac{\delta v}{V} & =\frac{p d^{2}}{4 \mathrm{tE}}\left(1-\frac{1}{\mathrm{~m}}\right) \\
\frac{\delta v}{V} & =\frac{3}{d}\left[\frac{\mathrm{pd}^{2}}{4 \mathrm{tE}}\left(1-\frac{1}{\mathrm{~m}}\right)\right] \\
& =\frac{3 \mathrm{pd}}{4 \mathrm{tE}}\left(1-\frac{1}{\mathrm{~m}}\right)
\end{aligned}
$$

orchange in volume, $\boldsymbol{\delta} v=\left\{\frac{3 \mathrm{pd}}{4 \mathrm{tE}}\left(1-\frac{1}{\mathrm{~m}}\right)\right\} \times \mathrm{V}$

Now substitutingV $=\frac{\pi}{6} d^{3}$, we get

$$
\begin{aligned}
& \delta v=\frac{3 \mathrm{pd}}{4 \mathrm{tE}}\left(1-\frac{1}{\mathrm{~m}}\right) \times \frac{\pi}{6} \mathrm{~d}^{3} \\
& \delta v=\frac{\pi \mathrm{pd}^{4}}{8 \mathrm{tE}}\left(1-\frac{1}{\mathrm{~m}}\right)
\end{aligned}
$$

