Problems
A beam 6m long simply supported at its ends carrying a point load of 50 KN at center. The moment of inertia of the beam is given as equal to $78 \times 10^{6} \mathrm{~mm}^{4}$. If E for material of the beam $=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, calculate,i)deflection at the center of the beam and ii)slope at the supports.

Given:

$\mathrm{I}=78 \times 10^{6} \mathrm{~mm}^{4} \mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
$y_{C}=? \theta_{A}=? \theta_{B}=?$

Solution:

To find deflection at center of beam
$\mathrm{W}=50 \mathrm{KN}=50 \times 10^{3} \mathrm{~N}$
$1=6 \mathrm{~m}=6000 \mathrm{~mm}$

$$
\mathrm{y}_{\mathrm{c}}=\frac{\mathrm{Wl}^{3}}{48 \mathrm{EI}}
$$

$$
\begin{aligned}
& =\frac{50 \times 10^{3} \times(6000)^{3}}{48 \times 2.1 \times 10^{5} \times 78 \times 10^{6}} \\
& =.13 .736 \mathrm{~mm}
\end{aligned}
$$

To find slope at supports
Using the relation, $\theta_{\mathrm{A}}=\frac{\mathrm{wl}^{2}}{16 \mathrm{EI}}$

$$
\begin{aligned}
& =\frac{50 \times 10^{3} \times(6000)^{2}}{16 \times 2.1 \times 10^{5} \times 78 \times 10^{6}} \\
& =6.868 \times 10^{-3} \text { radians } \\
& =6.868 \times 10^{-3} \frac{180}{\pi} \text { degrees }
\end{aligned}
$$

$=0.394^{\circ}$
Due to symmetry, $\theta_{B}=0.394^{\circ}$
Let us consider a beam of 5 m long simply supported at its ends, carryinga point load \mathbf{W} at its center. If the slope at the ends of the beam is not to exceed 1°, find the deflection at the center of the beam.

Given:

$1=5 \mathrm{~m}=5000 \mathrm{~mm}$.
$\theta_{A}=\theta_{B}=\rho^{0}=1 \times \frac{\pi}{180}$
$=0.0174$ radians
$\mathrm{y}_{\mathrm{c}}=$?

Solution:

Using the relation,

$$
\theta_{A}={\frac{W I^{2}}{16 E I}}_{\text {or }} 0.0174=\frac{W 1^{2}}{16 \mathrm{EI}}
$$

To find deflection at center
Using the relation,

$$
\begin{gathered}
y_{c}=\frac{\mathrm{Wl}^{3}}{48 \mathrm{EI}} \\
\mathrm{y}_{\mathrm{C}}=\frac{\mathrm{Wl}^{2}}{16 \mathrm{EI}} \times \frac{1}{3} \quad\left(\because \frac{\mathrm{Wl}^{2}}{16 \mathrm{EI}}=0.0174 ; \ell=5000 \mathrm{~mm}\right) \\
=0.0174 \times\left(\frac{5000}{3}\right)=29.08 \mathrm{~mm}
\end{gathered}
$$

Let us derive the expressions to find slope at supports and central deflection of a simply supported beam subjected to uniformly distributed load on its entire span.

Solution:

Consider a simply supported beam uniformly loaded w / m run on entire span as shown below.

Boundary conditions

at $\mathrm{A}, \mathrm{y}_{\mathrm{A}}=0$
at $B, y_{B}=0$
at $C, \theta_{c}=0$

Due to symmetry,

$$
\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=\frac{\mathrm{w} 1}{2}
$$

Consider a section $X X$ at a distance of x from A as shown in Figure.

$$
\mathrm{EI} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}}=\mathrm{M}
$$

\therefore

$$
\begin{equation*}
\mathrm{EI} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{w} \ell}{2} \mathrm{x}-\frac{\mathrm{wx}^{2}}{2} \tag{i}
\end{equation*}
$$

Integrating the equation (1)

$$
\mathrm{EI} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{w} \ell}{2} \frac{\mathrm{x}^{2}}{2}-\frac{\mathrm{w} \mathrm{x}^{3}}{6}+\mathrm{C}_{1}
$$

To find the constant C_{1}

Apply the Boundary condition that at $x=0, \theta_{C}=0$

$$
\begin{aligned}
& \text { EI } \theta_{\mathrm{C}}=\frac{\mathrm{w} \ell}{2} \times \frac{1}{2}\left(\frac{\ell}{2}\right)^{2}-\frac{\mathrm{w}}{6}\left(\frac{\ell}{2}\right)^{3}+\mathrm{C}_{1} \\
& 0=\frac{\mathrm{w} \ell^{3}}{16}-\frac{\mathrm{w} \ell^{3}}{48}+\mathrm{C}_{1} \\
& \therefore \quad \mathrm{C}_{1}=\frac{\mathrm{w} l^{3}}{48}-\frac{\mathrm{w} l^{3}}{16} \\
& =\frac{\mathrm{w} l^{\beta}-3 \mathrm{w} l^{\beta}}{48}=\frac{-\mathrm{w} l^{\beta}}{24} \\
& C_{1}=\frac{-w \ell^{3}}{24} \text { in the above equation, }
\end{aligned}
$$

substituting

EI $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{w} l}{4} \mathrm{x}^{2}-\frac{\mathrm{wx} x^{3}}{6}-\frac{-\mathrm{w} l^{3}}{24}$
known as Slope equation.
Integrating the equation (ii), we get

$$
\text { EI } y=\frac{w \ell}{4} \frac{x^{3}}{3}-\frac{w x^{4}}{24}-\frac{-w \ell^{3}}{24} x+C_{2}
$$

To Find constant C_{2}

Apply the Boundary condition that
at $x=0, y=0$
$\therefore \mathrm{EI} \times 0=0-0-0+\mathrm{C}_{2}$
$\therefore \mathrm{C}_{2}=0$
Substituting $C_{2}=0$ in the above equation,

$$
\begin{equation*}
\text { EI } \mathrm{y}=\frac{\mathrm{w} l}{12} \mathrm{x}^{3}-\frac{\mathrm{w} \mathrm{x}^{4}}{24}-\frac{\mathrm{w} l^{3}}{24} \mathrm{x} \tag{iii}
\end{equation*}
$$

known as Deflection equation.

To Find slope at supports

To Find θ_{A}, substitute $x=0$ in equation (ii) i.e., in slope equation.

$$
\begin{gathered}
\therefore \quad \text { EI } \theta_{\mathrm{A}}=\frac{-\mathrm{w} l^{3}}{24} \\
\theta_{\mathrm{A}}=\frac{-\mathrm{w}^{3}}{24 \mathrm{EI}} \quad \text { (-indicates clockwise slope) } \\
\text { Due to symmetry, } \theta_{\mathrm{B}}=\frac{-\mathrm{w} l^{3}}{24 \mathrm{EI}} \quad \text { (Clockwise slope) }
\end{gathered}
$$

Substitute $\quad x=\frac{1}{2}$ in equation (iii), i.e., deflection equation

$$
\begin{aligned}
\therefore \quad & \mathrm{EIy}_{\mathrm{C}}=\frac{\mathrm{w} l}{12}\left(\frac{l}{2}\right)^{3}-\frac{\mathrm{w}}{24}\left(\frac{l}{2}\right)^{4}-\frac{\mathrm{w} l^{3}}{24}\left(\frac{l}{2}\right) \\
= & \frac{\mathrm{w} \ell^{4}}{96}-\frac{\mathrm{w} \ell^{4}}{384}-\frac{\mathrm{w} \ell^{4}}{48} \\
= & \frac{4 \mathrm{w} \ell^{4}-\mathrm{w} \ell^{4}-8 \mathrm{w} \ell^{4}}{384}=\frac{-5 \mathrm{w} \ell^{4}}{384}
\end{aligned}
$$

$$
y_{c}=\frac{5 \mathrm{w} l^{4}}{384 \mathrm{EI}}
$$

(- indicates downward deflection)(Note that $\mathrm{y}_{\mathrm{c}}=$ $y_{\max }$).

Here we see a horizontal beam of uniform section and length ' 1 ' rests on supports at its ends. It carries a uniformly distributed load of w per unit run for a distance ' a ' from the right end. Calculate the value of ' a ' for which the maximum deflection will occur at the left end of the uniformly distributed load. If the maximum deflection is expressed by $\frac{\mathrm{wl}^{4}}{\mathrm{kEI}}$, find the value of k.

Given:

$Y_{\text {max }}$ occurs at C Determine, a?

Solution:

If $\mathrm{y}_{\mathrm{c}}=\mathrm{y}_{\text {max }}=\frac{\mathrm{wl}^{4}}{\mathrm{kEI}}$ determine k .

Step 1: Support Reactions
Applying $\Sigma \mathrm{V}=0(\uparrow=\downarrow)$
$R_{A}+R_{B}=w_{a} \ldots$ (i)
Applying $\Sigma M_{A}=0(\underset{\Delta}{ })$
$\mathrm{R}_{\mathrm{B}} \times \mathrm{I}=\mathrm{w} \times \mathrm{a} \times\left(l-\frac{\mathrm{a}}{2}\right)$

$$
\begin{aligned}
& =\text { wa } l-\frac{\mathrm{a}}{2} \\
\mathrm{R}_{\mathrm{B}} \times l & =\mathrm{wa} l-\frac{\mathrm{wa}^{2}}{2} \\
\mathrm{R}_{\mathrm{B}} & =\mathrm{wa} l-\frac{\mathrm{wa}^{2}}{2 l}
\end{aligned}
$$

$\mathrm{R}_{\mathrm{A}}=\mathrm{W}_{\mathrm{a}}-\mathrm{R}_{\mathrm{B}}$

$$
=w a-\left(w a-\frac{w a^{2}}{2 \ell}\right)=\frac{w a^{2}}{2 \ell}
$$

Consider a section $X X$ at a distance of x from A.
$(B M)_{x x}=M$

$$
\begin{aligned}
& =\left(\mathrm{R}_{\mathrm{A}} \times \mathrm{x}\right)-\left\{\mathrm{w} \times\{\mathrm{x}-(\ell-\mathrm{a})\} \times \frac{(\mathrm{x}-(\ell-\mathrm{a}))}{2}\right\} \\
& =\mathrm{R}_{\mathrm{A}} \mathrm{x}-\mathrm{w} \frac{(\mathrm{x}-(\ell-\mathrm{a}))^{2}}{2} \\
& =\frac{\mathrm{wa}^{2}}{2 \ell} \mathrm{x}-\mathrm{w} \frac{(\mathrm{x}-(\ell-\mathrm{a}))^{2}}{2}
\end{aligned}
$$

or $E I \frac{d^{2} y}{d x^{2}}=\frac{w a^{2}}{2 \ell} x-\frac{w}{2}(x-(\ell-a))^{2}$
Integrating the equation (1)

$$
\begin{equation*}
\mathrm{EI} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{wa}^{2} \mathrm{x}^{2}}{2 \ell \times 2}-\left\{\frac{\mathrm{w}}{2}\left(\mathrm{x}-(\ell-\mathrm{a})^{3}\right) \times \frac{1}{3}\right\}+\mathrm{C}_{1} \tag{2}
\end{equation*}
$$

Integrating the equation (2), we get

$$
\begin{equation*}
E I y=\frac{w a^{2} x^{3}}{12 \ell}-\frac{w}{4}\left(x-(\ell-a)^{4}\right)+C_{1} x+C_{2} \tag{3}
\end{equation*}
$$

To find C_{1} and C_{2}

Apply the Boundary conditions at $x=0, y=0$ in equation
$C_{2}=0$
at $x=I, y=0$ in equation (1)

$$
\begin{aligned}
0 & =\frac{\mathrm{wa}^{2}}{12 \ell}\left(\ell^{3}\right)-\frac{\mathrm{w}}{24}(\ell-(\ell-\mathrm{a}))^{2}+\left(\mathrm{C}_{1} \times \ell\right) \\
& =-\frac{\mathrm{wa}^{2} l}{12}+\frac{\mathrm{wa}^{4}}{24 l}
\end{aligned}
$$

Solving, C_{1}
Substituting C_{1} in equation (2), we get

$$
\mathrm{EI} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{wa}^{2} \mathrm{x}^{2}}{4 l}-\frac{\mathrm{wa}^{2} \mathrm{x}^{2}}{12}+\frac{\mathrm{wa}^{4}}{24 l}+\left\lvert\, \frac{\mathrm{w}}{6}\{\mathrm{x}-(l-\mathrm{a})\}^{2}\right.
$$

It is given $\mathrm{y}_{\max }$ occurs at C
At maximum deflection, $\frac{d y}{d x}=0$

$$
\frac{d y}{d x}=0 \text { at } x=(I-a)
$$

Substituting in the above equation,

$$
0=\frac{\mathrm{wa}^{2}}{4 \ell}(\ell-a)^{2}-\frac{\mathrm{wa}^{2} \ell}{12}+\frac{\mathrm{wa}^{4}}{24 \ell}
$$

Simplifying, we get $7 a^{2}-12|a+4|^{2}=0$

$$
\mathrm{a}=l\left[\frac{12 \pm \sqrt{144-4 \times 4 \times 7}}{2 \times 7}\right]
$$

Solving, $\quad=l\left[\frac{12 \pm 5.657}{14}\right]$
$=0.4531$
Substitutinga $=0.453 \mathrm{I}$ we get

$$
\begin{aligned}
& \quad \mathrm{C}_{1}=\frac{-\mathrm{w}(0.453 l)^{2} l}{12}+\frac{\mathrm{w}(0.453 l)^{4}}{24 l} \\
& =-0.01535 \mathrm{wl}^{3}
\end{aligned}
$$

:. substitute $\mathrm{x}=(\mathrm{I}-\mathrm{a})=0.547 \mathrm{I}$ and
$C_{1}=-0.01535 \mathrm{wl}^{3}$ in equation (3)
$y_{c}=y_{\text {max }}$

$$
\begin{aligned}
& =\frac{1}{\mathrm{EI}}\left[\frac{\mathrm{w}(0.453 \ell)^{2}}{12 \ell}(0.547 \ell)^{3}-\left\{0.01535 \mathrm{w} \ell^{2}(0.547 \ell)\right\}\right] \\
& =\frac{\mathrm{w} \ell^{4}}{\mathrm{EI}}[0.0028-0.0084] \\
& =\frac{-0.0056 \mathrm{w} \ell^{4}}{\mathrm{EI}}=-\frac{\mathrm{w} \ell^{4}}{178.65 \mathrm{EI}}
\end{aligned}
$$

(- sign indicates downward deflection)
$y_{c}=y_{\text {max }}=-\frac{w l^{4}}{178.65 \text { EI }}$ Hence $k=178.65$.

We shall discuss here about a beam of length 5 m and of uniform rectangular section is supported at its ends and carries uniformlydistributed load over the entire length. Calculate the depth of the section if the maximum permissible bending stress is $8 \mathrm{~N} / \mathrm{mm}^{2}$ and central deflection is not to exceed 10 mm . Take the value of $\mathrm{E}=1.2 \times 104 \mathrm{~N} / \mathrm{mm}^{2}$

Given:

$\Delta_{\text {max }}=\mathrm{y}_{\text {center }}=10 \mathrm{~mm}$;
$\mathrm{E}=1.2 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$
$\left(f_{b}\right)_{\max }=8 \mathrm{~N} / \mathrm{mm}^{2} ; 1=5 \mathrm{~m}=5000 \mathrm{~mm}$

Solution:

Here the unknown data are udl $=\mathrm{w}$, width b and depth d
Total load on the beam $(\mathrm{W})=u d l \times$ span of Beam
$\therefore \mathrm{W}=\mathrm{w} \times \mathrm{l}=\mathrm{wl}$

Max BM,

$$
\begin{equation*}
\mathrm{M}=\frac{\mathrm{w} l^{2}}{8}=\frac{\mathrm{W} l}{8} \tag{i}
\end{equation*}
$$

Using the relation $\frac{\mathrm{M}}{\mathrm{I}}=\frac{\mathrm{f}}{\mathrm{y}}$

$$
\begin{gather*}
\mathrm{M}=\frac{\mathrm{fI}}{\mathrm{y}}=\frac{8 \times \mathrm{I}}{\frac{\mathrm{~d}}{2}}\left(\because \mathrm{f}=\mathrm{f}_{\mathrm{b}}=8 \mathrm{~N} / \mathrm{mm}^{2} ; \mathrm{y}=\frac{\mathrm{d}}{2}\right) \\
\mathrm{M}=\frac{161}{\mathrm{~d}} \tag{ii}
\end{gather*} .
$$

Equating (i) and (ii)

$$
\frac{\mathrm{W} \ell}{8}=\frac{16 \mathrm{I}}{\mathrm{~d}}_{\text {or }}^{\mathrm{W}}=\frac{1281}{\mathrm{~d} l}
$$

Using the relation, $y_{C}=\frac{5 \mathrm{wl}^{4}}{384 \mathrm{EI}}$

$$
\begin{aligned}
& \begin{array}{l}
=\frac{5(\mathrm{wl}) 1^{3}}{384 \mathrm{EI}}=\frac{5 \mathrm{~W} \ell^{3}}{384 \mathrm{EI}} \quad(\because \mathrm{~W}=\mathrm{w} \ell) \\
\therefore \quad y_{\mathrm{C}}
\end{array} \begin{aligned}
& =\frac{5}{384 \mathrm{EI}}\left(\frac{128 \mathrm{I}}{\mathrm{~d} \ell}\right) \cdot \ell^{3} \\
& =\frac{5}{384} \times \frac{1}{\mathrm{E}} \times \frac{128}{\mathrm{~d}} \times \ell^{2} \\
\text { or } 10= & \frac{5}{384} \times \frac{1}{1.2 \times 10^{4}} \times \frac{128}{\mathrm{~d}} \times(5000)^{2}
\end{aligned}
\end{aligned}
$$

$$
\left(\because y_{c}=10 \mathrm{~mm}\right)
$$

$$
\text { Solving, } d=\frac{5 \times 128 \times(5000)^{2}}{384 \times 10 \times 1.2 \times 10^{4}}
$$

$=347.2$ say 348 mm

