Here we see a simply supported beam of span 6 m and of I section has the top flange $40 \mathrm{~mm} \times 5 \mathrm{~mm}$, Bottom flange of 60 $\mathrm{mm} \times 5 \mathrm{~mm}$ total depth of 100 mm and web thickness 4 mm . It carries an udl of 2 kNm over the full span. Calculate the maximum tensile stress and maximum compressive stress produced.

Solution:

The cross section of the beam is shown below.

The beam is simply supported and uniformly loaded as shown below.
$\therefore \operatorname{Max~BM}=\frac{\omega 1^{2}}{8}$

$$
=\frac{2 \times 6^{2}}{8}=9 \mathrm{kNm}
$$

$=9 \times 106 \mathrm{Nmm}$.

To find $I_{N A}$ and $Y_{\text {max }}$
To find ${ }^{\mathrm{y}}$
$a_{1}=40 \times 5$
$=200 \mathrm{~mm}^{2}$
$y_{1}=95+\frac{5}{2}$
$=97.5 \mathrm{~mm}$

$a_{2}=5 \times 90$
$=450 \mathrm{~mm}^{2}$
$y_{2}=5+\frac{90}{2}=50 \mathrm{~mm}^{2} ; y_{3}=\frac{\frac{5}{2}}{2}=2.5 \mathrm{~mm}$
$a=60 \times 5=300 \mathrm{~mm}^{2}$

$$
\begin{aligned}
\therefore \quad \bar{y} & =\frac{a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}}{a_{1}+a_{2}+a_{3}} \\
& =\frac{(200 \times 97.5)+(450 \times 50)+(300 \times 2.5)}{200+450+300}
\end{aligned}
$$

$=45 \mathrm{~mm}$
Moment of Inertia $I_{N A}$
$I_{N A}=I_{1}+I_{2}+I_{3}$ Here $I_{G}=I_{x x}$

$$
\begin{aligned}
I 1=I G 1+A 1 \overline{\mathrm{~h}}_{1}^{2} & \overrightarrow{\mathrm{~h}}_{1}=\mathrm{y} 1 \sim
\end{aligned} \overrightarrow{\mathrm{y}} .
$$

$=551666 \mathrm{~mm}^{4}$
$I_{2}=I_{G 2}+A_{2}{\overline{h_{2}}}^{2} \quad \vec{h}_{2}=\vec{y} \sim y_{2}$

$$
=\frac{5 \times 90^{3}}{12}+\left\{450 \times(50-45)^{2}\right\}
$$

$=315 \times 10^{3} \mathrm{~mm}^{4}$
$I_{3}=I_{G 3}+A_{3}{\overline{h_{3}}}^{2}$

$$
=\frac{60 \times 5^{3}}{12}+\left\{300 \times(45-2.5)^{2}\right\}=542,500 \mathrm{~mm}^{4}
$$

$\therefore I_{N A}=I_{1}+I_{2}+I_{3}$
$=(551666)+\left(315 \times 10^{3}\right)+(542500)$
$=1409166 \mathrm{~mm}^{4}$
With respect to the neutral axis, top fibers will be subjected to compression and bottom fibers will be subjected to tensile since the beam is simply supported.
$\therefore\left(y_{t}\right)=45 \mathrm{~mm}$ and $\left(y_{c}\right)=55 \mathrm{~mm}$
Maximum Bending tensile stress $\left.\left(\mathrm{f}_{\mathrm{b}}\right)_{\mathrm{t}}\right)=$?
Using the relation

$$
\frac{M}{I}=\frac{f}{y}_{\text {(or)f }}=\frac{M y}{I}
$$

$\operatorname{or}\left(f_{b}\right)_{t}=\frac{M\left(y_{t}\right)}{I_{N A}}=\frac{9 \times 10^{6} \times 45}{1409166}=287.4 \mathrm{~N} / \mathrm{mm}^{2}$
Maximum Bending compressive stress $\left(f_{b}\right)_{c}=$?
From the equation

$$
\begin{aligned}
f & =\frac{M y}{I} \\
\left(f_{b}\right)_{c} & =\frac{M\left(y_{C}\right)}{I_{N A}}=\frac{9 \times 10^{6} \times 55}{1409166}=351.27 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Let us discuss a cast iron beam I section as shown in figure below is simply supported for a span of 5 m . If the tensile stress is not to exceed $20 \mathrm{~N} / \mathrm{mm}^{2}$, find the maximum compressive stress.

Given:
$\left(\mathrm{f}_{\mathrm{b}}\right)_{\mathrm{t}}=20 \mathrm{~N} / \mathrm{mm}^{2}\left(\mathrm{f}_{\mathrm{b}}\right)_{\mathrm{c}}=$?

Solution:

To Find $I_{\text {NA }}$

Location of Centroid

$$
a_{1}=80 \times 20=1600 \mathrm{~mm}^{2} ; y_{1}=40+200+\frac{\frac{20}{2}}{2}=250 \mathrm{~mm}
$$

$$
a_{2}=20 \times 200=4000 \mathrm{~mm}^{2} ; y_{2}=40+\frac{\frac{200}{2}}{2}=140 \mathrm{~mm}
$$

$$
a_{3}=160 \times 40=6400 \mathrm{~mm}^{2} ; y_{3}=\frac{\frac{40}{2}}{2}=20 \mathrm{~mm}
$$

$$
\overline{\mathrm{y}}=\frac{\mathrm{a}_{1} \mathrm{y}_{1}+\mathrm{a}_{2} \mathrm{y}_{2}+\mathrm{a}_{3} \mathrm{y}_{3}}{\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}}
$$

$$
=\frac{(1600 \times 250)+(4000 \times 140)+(6400 \times 20)}{1600+4000+6400}
$$

$$
=90.67 \mathrm{~mm}
$$

Since the beam is simply supported, with respect to neutral axis, above compression and below tension.
$\therefore\left(\mathrm{y}_{\mathrm{t}}\right)_{\max }=90.67 \mathrm{~mm}$
$\left(y_{c}\right)_{\max }=260-90.67=169.33 \mathrm{~mm}$
Now using the equation,
$M=\left(f_{b}\right)_{\max } \times \frac{I_{N A}}{y_{\max }}$.
It is given maximum tensile stress $=20 \mathrm{~N} / \mathrm{mm}^{2}$
Hence $\left(f_{b}\right)_{\max }=20 \mathrm{~N} / \mathrm{mm}^{2}$ and $\left(\mathrm{y}_{\mathrm{t}}\right)_{\max }=90.67 \mathrm{~mm}$
To find $I_{N A}$

$$
\begin{aligned}
& I_{N A}=I_{1}+I_{2}+I_{3} \overline{\overline{\mathrm{~h}_{1}}=\mathrm{y}_{1}-\overline{\mathrm{y}}} \\
& \begin{aligned}
I_{1}=I_{G 1}+\mathrm{A}_{1} & \overline{\mathrm{~h}}_{1}^{2} \\
& =\frac{80 \times 20^{3}}{12}+\left\{(80 \times 20) \times(250-90.67)^{2}\right\}
\end{aligned} \\
& =40.671 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

$$
\mathrm{I}_{2}=\mathrm{I}_{\mathrm{G} 2}+\mathrm{A}_{2} \overline{\mathrm{~h}}^{2} \quad \overline{\overline{\mathrm{~h}_{2}}=\mathrm{y}_{2} \sim \overline{\mathrm{y}}}
$$

$$
=\frac{20 \times 200^{3}}{12}+\left\{(20 \times 200) \times(140-90.67)^{2}\right\}
$$

$=23.067 \times 10^{6} \mathrm{~mm}^{4}$
$I_{3}=I_{G 3}+A_{3}{\overline{h_{3}}}^{2} \quad \overline{\mathrm{~h}_{3}}=y_{3} \sim \bar{y}$

$$
=\frac{160 \times 40^{3}}{12}+\left\{(160 \times 40) \times(90.67-20)^{2}\right\}
$$

$=32.817 \times 10^{6} \mathrm{~mm}^{4}$
$\therefore I_{N A}=\left(40.671 \times 10^{6}\right)+\left(23.067 \times 10^{6}\right)+\left(32.817 \times 10^{6}\right)$
$=96.555 \times 10^{6} \mathrm{~mm}^{4}$
Substitute $\left(f_{b}\right) \max , I_{\text {NA }}$ and $\left(y_{t}\right)$ max in equation (1)
$\therefore M=20 \times \frac{96.555 \times 10^{6}}{90.67}$
$=21.298 \times 10^{6} \mathrm{~N} \mathrm{~mm}$

$$
=\frac{21.298 \times 10^{6}}{10^{6}} \mathrm{kNm}
$$

$=21.298 \mathrm{k} \mathrm{Nm}$
But for a simply supported beam with UDL on entire span, max.BM atcenter $=\frac{\mathrm{wI}^{2}}{8}$

$$
\therefore \quad \frac{\mathrm{WI}^{2}}{8}=21.298
$$

$$
\text { or } \frac{\mathrm{w} \mathrm{x} \mathrm{5}}{} \mathrm{5}^{2}-21.298(\because 1=5 \mathrm{~m})
$$

Solvingw $=6.81 \mathrm{k} \mathrm{Nm}$
\therefore The safe UDL that the beam can carry $=6.81 \mathrm{k} \mathrm{N} / \mathrm{m}$
To Find Maximum Bending Compressive stress $\left[\left(f_{b}\right)_{c} \max \right]$
Using the relation,
$\mathbf{M}=\left(f_{b}\right)_{\max } \times \frac{I_{N A}}{\mathrm{y}_{\max }}$
of $\left(f_{b}\right)_{c} \max =\frac{\mathrm{Mx}(\mathrm{yc})_{\max }}{\mathrm{I}_{\mathrm{NA}}}$

$$
=\frac{21.298 \times 10^{6} \times 169.33}{96.555 \times 10^{6}}
$$

$=37.35 \mathrm{~N} / \mathrm{mm}^{2}$

