Bending stress distribution

2.7.1 Bending stress distribution and shear stress distribution for a rectangular section

Bending stress distribution and shear stress distribution for a rectangular section.

Rectangular section

Bending stress distribution

Shear stress distribution

Problems

Let us solve a timber of rectangular section which support a load of 20 KN , uniformly distributed over a span of 3.6 m when beam is simply supported, If the depth of section is to be twice the breadth and the stress in the timber is not to exceed 7 $\mathrm{N} / \mathrm{mm}^{2}$. find the dimensions of the cross section.

Given :

Total load= 20 N over a span of 3.6 m

$$
\begin{aligned}
& \therefore \text { udl }=\frac{20}{3.6}=5.55 \mathrm{k} \mathrm{Nm} \\
& \text { depth }=2 \times \text { breadth } \therefore d=2 b
\end{aligned}
$$

Max.stress, $\left(\mathrm{f}_{\mathrm{b}}\right)_{\max }=7 \mathrm{~N} / \mathrm{mm}^{2}$ Find $: \mathrm{b}=? \mathrm{~d}=$?

Solution:

$\operatorname{Max~BM}=\frac{\mathrm{wl}^{2}}{8}$

$$
=\frac{5.5 \times(3.6)^{2}}{8}
$$

$=8.91 \mathrm{k} \mathrm{Nm}$
ButMax $\mathrm{BM}=$ Maximum Bending stress \times Section modulus
i.e., $M=\left(f_{b}\right)_{\max } \times Z$
$=\left(f_{b}\right)_{\text {max }} \times \frac{I_{N A}}{y_{\text {max }}}$
$=\left(f_{b}\right)_{\max } \times \frac{\left(\mathrm{bd}^{3} / 12\right)}{\frac{d}{2}}$

$$
\frac{\mathrm{bd}^{3}}{12}
$$

$y_{\text {max }}=\frac{d}{2}$
Substituting $\mathrm{d}=2 \mathrm{~b}$ and $\left(\mathrm{f}_{\mathrm{b}}\right)=7 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
M & =7 \times\left\{\frac{b(2 b)^{3}}{12} \times \frac{2}{(2 b)}\right\} \\
& =7 \times\left\{\frac{b \times 8 b^{3}}{12} \times \frac{2}{2 b}\right\}=7 \times\left(\frac{8 b^{3}}{12}\right)
\end{aligned}
$$

$M=4.67 b^{3}$
or8.91 $\times 10^{6}=4.67 \mathrm{~b}^{3}\left(\because \mathrm{M}=8.91 \mathrm{k} \mathrm{Nm}=8.91 \times 10^{6} \mathrm{~N} \mathrm{~mm}\right)$
Solving, $\mathrm{b}=124.02$ say 125 mm
\therefore Depth of beam, $\mathrm{d}=2 \mathrm{~b}=2 \times 125=250 \mathrm{~mm}$
\therefore Size of the beam $=125 \mathrm{~mm} \times 250 \mathrm{~mm}$
Let us solve A beam of rectangular cross section 50 mm wide and 150 mm deep which used as a cantilever 6 m long and subjected to a uniformly distributed load of $2 \mathrm{KN} / \mathrm{m}$ over the entire length. Determine the bending stress at 50 mm from the
top fiber, at the mid-span of the beam. Also calculate the maximum bending stress.

Given:b $=50 \mathrm{~mm} ; \mathrm{d}=150 \mathrm{~mm}$

Solution:

Bending stress at mid span of beam is required. Hence, find the bending moment at mid span.

BM at Mid span $=-\left(2 \times 3 \times \frac{\frac{3}{2}}{2}\right)=-9 \mathrm{k} \mathrm{Nm}$
$=9 \mathrm{k} \mathrm{Nm}$ (Hogging BM)
Bending stress at 50 mm from top fiber is required.

$$
\therefore \quad y=\frac{150}{2}-50
$$

$=25 \mathrm{~mm}$

$$
I_{\mathrm{NA}}=\frac{\mathrm{bd}^{3}}{12}=\frac{50 \times 150^{3}}{12}
$$

$=14.06 \times 10^{6} \mathrm{~mm}^{4}$

Using the equation,

$$
\frac{M}{I}=\frac{f}{y}\left(\because M=9 \mathrm{k} \mathrm{Nm}=9 \times 10^{6} \mathrm{~N} \mathrm{~mm}\right)
$$

orf $=\frac{M y}{I}=\frac{9 \times 10^{6} \times 25}{14.06 \times 10^{6}}=16 \mathrm{~N} / \mathrm{mm}^{2}$
To find the Max. Bending stress
Using the equation,

$$
\frac{\mathrm{M}}{\mathrm{I}}=\frac{\mathrm{f}}{\mathrm{y}}
$$

But $M=M a x B M=(B M)$ at A
$=-\left(2 \times 6 \times \frac{6}{\frac{6}{2}}\right)=-36 \mathrm{kNm}$
$=36 \times 10^{6} \mathrm{~N} \mathrm{~mm}$ (Hogging)
$I=I_{N A}=14.06 \times 10^{6} ; y=y_{\max }=\frac{\frac{150}{2}}{2}=75 \mathrm{~mm}$

$$
f_{\max }=\frac{M_{\max } \times y_{\max }}{I_{N A}}
$$

$$
=\frac{36 \times 10^{6} \times 75}{14.06 \times 10^{6}}
$$

$=192 \mathrm{~N} \mathrm{~mm}^{2}$
We see that two beams are simply supported over the same span and have the same flexural strength. Compare the weight of these two beams, if one of them is solid and the other is hollow circular with internal diameter half of the external diameter.

Solution:

Both the beams have same span and same flexural strength.
i.e.,(BM) $)_{1}=(B M)_{2}$

But Flexural strength $=\left(f_{b}\right)_{\max } \times Z$
\therefore Flexural strength of solid beam $=$ Flexural strength of Hollow beam
i.e., $\left(f_{b}\right)_{\max } \times Z_{\text {solid }}=\left(f_{b}\right)_{\max } \times Z_{\text {hollow }}$

Since both the beams are of same material, $\left(\mathbf{f}_{\mathrm{b}}\right)_{\max }$ will be the same in both the beams.
i.e.,

$$
Z_{\text {sobid }}=Z_{\text {Hollow }}
$$

i.e.,

$$
\frac{\pi}{32}\left(D_{s}\right)^{3}=\frac{\pi}{32 D_{h}}\left(D_{h}{ }^{4}-\left(0.5 D_{h}\right)^{4}\right)
$$

i.e.,
$\left(D_{S}\right)^{3}=\frac{D_{\mathrm{h}}{ }^{4}}{\mathrm{D}_{\mathrm{h}}}(1-0.0625)$
$\left(\mathrm{D}_{\mathrm{S}}\right)^{3}=0.9375\left(\mathrm{D}_{\mathrm{h}}\right)^{3}$
or

$$
\frac{\left(\mathrm{D}_{\mathrm{h}}\right)^{3}}{\left(\mathrm{D}_{\mathrm{s}}\right)^{3}}=\frac{1}{0.9375}=1.067
$$

or

$$
\left(\frac{D_{b}}{D_{s}}\right)^{3}=1.067
$$

or $\frac{D_{h}}{D_{s}}=\sqrt[3]{1.067}$ $=1.022$
$D_{s}=0.9787 D_{h}$
To find the ratio of weight

Density of solid beam \times

$\frac{\text { Weight of solid beam }}{\text { Weight of Hollow beam }}$	$=\frac{\text { Area of crosssection of solid }}{\text { Density of hollow beam } \times}$
	Area of cross sec tion of hollow
	$=\frac{\text { Area of } \mathrm{c} / \mathrm{s} \text { of solid }}{\text { Area of } \mathrm{c} / \mathrm{s} \text { of hollow }}$

(\because Density is same)

$$
\begin{aligned}
& =\frac{\frac{\pi}{4}\left(D_{s}\right)^{2}}{\frac{\pi}{4}\left(D_{h}{ }^{2}-d^{2}\right)} \\
& =\frac{\left(D_{s}\right)^{2}}{\left(D_{h}\right)^{2}-\left(0.5 D_{h}\right)^{2}} \quad\left(\because d=\frac{D_{h}}{2}\right) \\
& =\frac{\left(D_{S}\right)^{2}}{\left(D_{h}\right)^{2}(1-0.25)} \\
& =\frac{\left(D_{s}\right)^{2}}{0.75\left(D_{h}\right)^{2}}
\end{aligned}
$$

Substituting $D_{s}=0.9787 D_{h}$

$$
\frac{\left(\mathrm{D}_{\mathrm{S}}\right)^{2}}{0.75\left(\mathrm{D}_{\mathrm{h}}\right)^{2}}=\frac{\left(0.9787 \mathrm{D}_{\mathrm{h}}\right)^{2}}{0.75\left(\mathrm{D}_{\mathrm{h}}\right)^{2}}=\frac{(0.9787)^{2} \times\left(\mathrm{D}_{\mathrm{h}}\right)^{2}}{0.75\left(\mathrm{D}_{\mathrm{h}}\right)^{2}}
$$

$=1.277$ (Ans)

