

**SNS COLLEGE OF ENGINEERING** 

(Autonomous) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

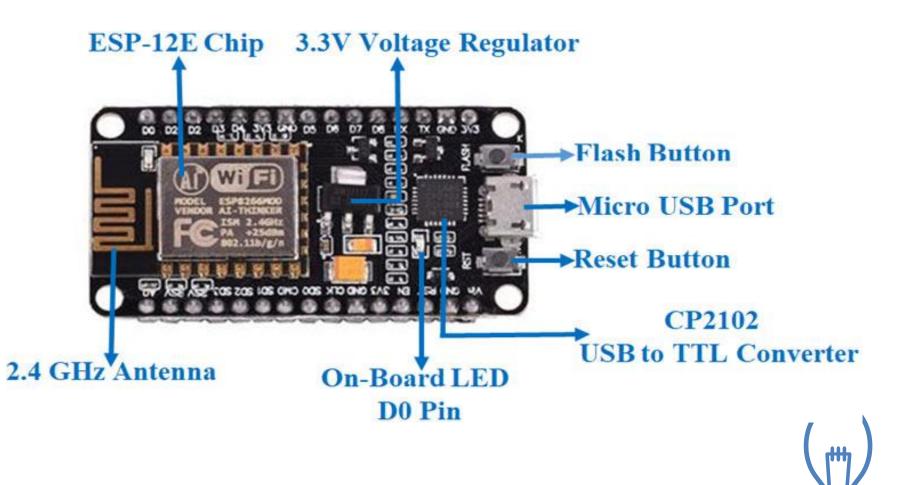


## **190E204- IoT System Architecture**

# **Node MCU**

Prepared by, K.Sangeetha Assistant Professor/ECE SNS College of Engineering

NodeMCU is an open source firmware or development board with ESP8266 chip, which is a 32-bit controller with built-in WiFi transceiver


The name "NodeMCU" combines "node" and "MCU" (micro-controller unit)

This board is specially targeted for **IoT based Applications**.

NodeMCU has 128 KB RAM and 4MB of Flash memory to store data and programs. Its high processing power with in-built Wi-Fi / Bluetooth and Deep Sleep Operating features make it ideal for IoT projects.



11/12 K.Sangeetha /IoT System Architecture/19ECT213/Introduction to Arduino & Node MCU



### NodeMCU - Specfication

 Microcontroller: Tensilica 32-bit RISC CPU Xtensa LX106 •Operating Voltage: 3.3V •Input Voltage: 7-12V •Digital I/O Pins (DIO): 16 •Analog Input Pins (ADC): 1 •UARTs: 1 •SPIs: 1 •I2Cs: 1 •Flash Memory: 4 MB •SRAM: 64 KB •Clock Speed: 80 MHz •USB-TTL based on CP2102 is included onboard, Enabling Plug n Play •PCB Antenna •Small Sized module to fit smartly inside your IoT projects



•Low-cost: you can get ESP8266 boards starting at \$3 (or less) depending on the model.

•Low-power: the ESP8266 consumes very little power when compared with other microcontrollers and can even go into <u>deep sleep</u> mode to consume less power;

•Wi-Fi: the ESP8266 can generate its own Wi-Fi network (<u>access point</u>) or connect to other Wi-Fi networks (station) to get access to the internet.

•Compatible with the Arduino "programming language": those that are already familiar with programming the Arduino board.

•<u>Compatible with MicroPython</u>: you can program the ESP8266 with MicroPython



### NodeMCU – Technical Data

•Processor: L106 32-bit RISC microprocessor core based on the Tensilica Diamond Standard 106Micro running at 80 or 160 MHz

•Memory:

- 32 KiB instruction RAM
- 32 KiB instruction cache RAM
- 80 KiB user-data RAM
- 16 KiB ETS system-data RAM

•External QSPI flash: up to 16 MiB is supported (512 KiB to 4 MiB typically included)

•IEEE 802.11 b/g/n Wi-Fi

•Integrated TR switch, balun, LNA, power amplifier, and matching network

•WEP or WPA/WPA2 authentication, or open networks

•17 GPIO pins

•Serial Peripheral Interface Bus (SPI)

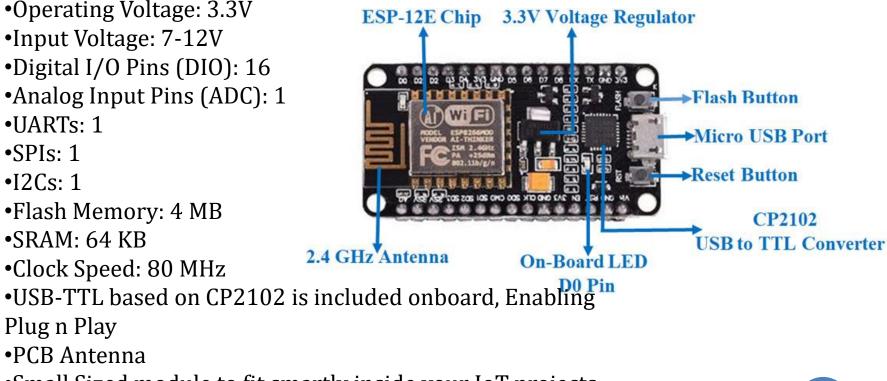
•l<sup>2</sup>C (software implementation)

•I<sup>2</sup>S interfaces with DMA (sharing pins with GPIO)

•UART on dedicated pins, plus a transmit-only UART can be enabled on GPIO2

•10-bit ADC (successive approximation ADC) K.Sangeetha /IoT System Architecture/19ECT213/Introduction to Arduino & Node MCU

11/12 06.02.2021


# Difference Between ESP8266 (NodeMCU) and Arduino UNO

| Specification    | Arduino              | ESP8266                            |
|------------------|----------------------|------------------------------------|
| RAM              | 4K Bytes             | 80 Kilobytes                       |
| FLASH memory     | 32 Kilo bytes        | 4 Mega Bytes                       |
| Speed            | 16MHz                | 80MHz                              |
| GPIOs            | 14                   | 11                                 |
| IO Voltage Level | 5V                   | 3.3V                               |
| ADC              | 6 (10-bit)           | 1 (10-Bit)                         |
| Serial           | 1                    | 1                                  |
| 12C              | 1                    | 1                                  |
| SPI              | 1                    | Used by Flash Chip                 |
| PWM IOs          | 6 (8-Bit Resolution) | All IO Pins with 10-Bit Resolution |
| WiFi             | NO                   | YES 2 MBPS                         |






•Microcontroller: Tensilica 32-bit RISC CPU Xtensa LX106



•Small Sized module to fit smartly inside your IoT projects

