
UNIT I

INTRODUCTION

UNIT I

INTRODUCTION

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Introduction
• Introduction

• What Operating Systems Do
• Computer-System Architecture
• Operating-System Structure
• Operating-System Operations
• Operating-System Services
• User Operating System Interface
• System Calls
• Types of System Calls
• System Programs
• System Boot

Introduction
• Process Concept

• Process Scheduling
• Operations on Processes
• Interprocess Communication

04-03-2023

Interprocess

• Processes within a system may be independent

• Cooperating process can affect or be affected by other processes, including sharing data

• Reasons for cooperating processes:
• Information sharing
• Computation speedup
• Modularity
• Convenience

• Cooperating processes need interprocess communication

• Two models of IPC
• Shared memory
• Message passing

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Interprocess Communication

independent or cooperating

Cooperating process can affect or be affected by other processes, including sharing data

interprocess communication (IPC)

04-03-2023

Communications Models
(a) Message passing. (b) shared memory.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Communications Models
(a) Message passing. (b) shared memory.

04-03-2023

Cooperating Processes

• Independent process cannot affect or be affected by the execution of another

process

• Cooperating process can affect or be affected by the execution of another

process

• Advantages of process cooperation

• Information sharing

• Computation speed-up

• Modularity

• Convenience
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Cooperating Processes

process cannot affect or be affected by the execution of another

process can affect or be affected by the execution of another

04-03-2023

Producer

• Paradigm for cooperating processes, producer

information that is consumed by a consumer

• unbounded-buffer places no practical limit on the size of the

buffer

• bounded-buffer assumes that there is a fixed buffer size

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Producer-Consumer Problem

producer process produces

consumer process

places no practical limit on the size of the

assumes that there is a fixed buffer size

04-03-2023

Bounded

• Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

• Solution is correct, but can only use BUFFER_SIZE

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Bounded-Buffer – Shared-
Memory Solution

item buffer[BUFFER_SIZE];

Solution is correct, but can only use BUFFER_SIZE-1 elements

04-03-2023

Bounded

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Bounded-Buffer – Producer

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

;

in = (in + 1) % BUFFER_SIZE;

04-03-2023

Bounded Buffer

item next_consumed;

while (true) {

while (in == out)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Bounded Buffer – Consumer

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

04-03-2023

Interprocess Communication
– Shared Memory

• An area of memory shared among the processes that wish to communicate

• The communication is under the control of the users processes

operating system.

• Major issues is to provide mechanism that will allow the user processes to

synchronize their actions when they access shared memory.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Interprocess Communication
Shared Memory

among the processes that wish to communicate

under the control of the users processes not the

Major issues is to provide mechanism that will allow the user processes to

synchronize their actions when they access shared memory.

04-03-2023

Interprocess
– Message Passing

• Mechanism for processes to communicate and to synchronize their

actions

• Message system – processes communicate with each other without

resorting to shared variables

• IPC facility provides two operations:

• send(message)

• receive(message)

• The message size is either fixed or variable

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Interprocess Communication
Message Passing

Mechanism for processes to communicate and to synchronize their

processes communicate with each other without

either fixed or variable

04-03-2023

Message Passing (Cont.)

• If processes P and Q wish to communicate, they need to:

• Establish a communication link between them

• Exchange messages via send/receive

• Implementation issues:
• How are links established?
• Can a link be associated with more than two processes?
• How many links can there be between every pair of communicating processes?
• What is the capacity of a link?
• Is the size of a message that the link can accommodate fixed or variable?
• Is a link unidirectional or bi-directional?

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Message Passing (Cont.)

wish to communicate, they need to:

between them

Exchange messages via send/receive

Can a link be associated with more than two processes?
How many links can there be between every pair of communicating processes?

Is the size of a message that the link can accommodate fixed or variable?
directional?

04-03-2023

Message Passing (Cont.)

• Implementation of communication link

• Physical:

• Shared memory

• Hardware bus

• Network

• Logical:

• Direct or indirect

• Synchronous or asynchronous

• Automatic or explicit buffering

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Message Passing (Cont.)

Implementation of communication link

Synchronous or asynchronous

Automatic or explicit buffering

04-03-2023

Direct Communication

• Processes must name each other explicitly:

• send (P, message) – send a message to process P

• receive(Q, message) – receive a message from process Q

• Properties of communication link

• Links are established automatically

• A link is associated with exactly one pair of communicating processes

• Between each pair there exists exactly one link

• The link may be unidirectional, but is usually bi

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Direct Communication

Processes must name each other explicitly:

send a message to process P

receive a message from process Q

Links are established automatically

A link is associated with exactly one pair of communicating processes

Between each pair there exists exactly one link

The link may be unidirectional, but is usually bi-directional

04-03-2023

Indirect Communication

• Messages are directed and received from mailboxes

• Each mailbox has a unique id

• Processes can communicate only if they share a mailbox

• Properties of communication link

• Link established only if processes share a common mailbox

• A link may be associated with many processes

• Each pair of processes may share several communication links

• Link may be unidirectional or bi-directional

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Indirect Communication

from mailboxes (also referred to as ports)

Processes can communicate only if they share a mailbox

Link established only if processes share a common mailbox

A link may be associated with many processes

Each pair of processes may share several communication links

directional

04-03-2023

Indirect Communication

• Operations

• create a new mailbox (port)

• send and receive messages through mailbox

• destroy a mailbox

• Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Indirect Communication

send and receive messages through mailbox

send a message to mailbox A

receive a message from mailbox A

04-03-2023

Indirect Communication
• Mailbox sharing

• P1, P2, and P3 share mailbox A

• P1, sends; P2 and P3 receive

• Who gets the message?

• Solutions

• Allow a link to be associated with at most two processes

• Allow only one process at a time to execute a receive operation

• Allow the system to select arbitrarily the receiver. Sender is notified

who the receiver was.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Indirect Communication

Allow a link to be associated with at most two processes

Allow only one process at a time to execute a receive operation

Allow the system to select arbitrarily the receiver. Sender is notified

04-03-2023

Synchronization

• Message passing may be either blocking or non

• Blocking is considered synchronous

• Blocking send -- the sender is blocked until the message is received

• Blocking receive -- the receiver is blocked until a message is available

• Non-blocking is considered asynchronous

• Non-blocking send -- the sender sends the message and continue

• Non-blocking receive -- the receiver receives:

- A valid message, or Null message

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Synchronization

Message passing may be either blocking or non-blocking

synchronous

the sender is blocked until the message is received

the receiver is blocked until a message is available

asynchronous

the sender sends the message and continue

the receiver receives:

A valid message, or Null message

04-03-2023

Synchronization (Cont.)
Producer-consumer becomes trivial

message next_produced;
while (true) {

/* produce an item in next produced */
send(next_produced);
}

message next_consumed;
while (true) {

receive(next_consumed);

/* consume the item in next consumed */
}

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Synchronization (Cont.)
consumer becomes trivial

produce an item in next produced */

/* consume the item in next consumed */

04-03-2023

• Queue of messages attached to the link.

• implemented in one of three ways

1.Zero capacity – no messages are queued on a link.

Sender must wait for receiver (rendezvous)

2.Bounded capacity – finite length of

Sender must wait if link full

3.Unbounded capacity – infinite length

Sender never waits

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Buffering

Queue of messages attached to the link.

no messages are queued on a link.

Sender must wait for receiver (rendezvous)

finite length of n messages

infinite length

04-03-2023

Examples of IPC Systems

POSIX Shared Memory

• Process first creates shared memory

shm_fd = shm_open(name, O CREAT | O

• Also used to open an existing segment to share it

• Set the size of the object

ftruncate(shm fd, 4096);

• Now the process could write to the shared memory

• sprintf(shared memory, "Writing to shared memory")

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Examples of IPC Systems - POSIX

Process first creates shared memory segment

(name, O CREAT | O RDWR, 0666);

Also used to open an existing segment to share it

, 4096);

the process could write to the shared memory

(shared memory, "Writing to shared memory");

04-03-2023

Examples of IPC Systems

• Mach communication is message based

• Even system calls are messages

• Each task gets two mailboxes at creation

• Only three system calls needed for message transfer

msg_send(), msg_receive(), msg_rpc()

• Mailboxes needed for commuication, created via

• Send and receive are flexible, for example four options if mailbox full:
• Wait indefinitely
• Wait at most n milliseconds
• Return immediately
• Temporarily cache a message

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Examples of IPC Systems - Mach

Each task gets two mailboxes at creation- Kernel and Notify

Only three system calls needed for message transfer

msg_send(), msg_receive(), msg_rpc()

Mailboxes needed for commuication, created via port_allocate()

Send and receive are flexible, for example four options if mailbox full:

04-03-2023

TEXT BOOK
1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10

Sons, Inc., 2018.

2. Jane W. and S. Liu. “Real-Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3

3. P.C.Bhatt, “An Introduction to Operating Systems–Concepts and Practice",4

REFERENCES

1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10th Edition, John Wiley &

Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9th Edition, Prentice Hall of India., 2018.

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3rdEdition, Tata McGraw hill 2016.

Concepts and Practice",4th Edition, Prentice Hall of India., 2013.

THANK YOU

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 04-03-2023

