UNIT |

INTRODUCTION

~CALL LU - -
- h RESOL m:Es

ERQTING

el




e Introduction

What Operating Systems Do
Computer-System Architecture
Operating-System Structure
Operating-System Operations
Operating-System Services

User Operating System Interface
System Calls

Types of System Calls

System Programs

System Boot

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Introduction

e Process Concept
* Process Scheduling
» Operations on Processes
 Interprocess Communication

04-03-2023



e Batch system — jobs
e Time-shared systems — user programs or tasks

» Textbook uses the terms job and process almost interchangeably

* Process —a program in execution; process execution must progress in sequential
fashion

« Multiple parts
e The program code, also called text section

Current activity including program counter, processor registers
Stack containing temporary data
e Function parameters, return addresses, local variables
Data section containing global variables
Heap containing memory dynamically allocated during run time

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



T T S o = = . 45‘

Process Concept (Cont.)

INSTTTUZ/ONS]

e Program is passive entity stored on disk (executable file), process is active

* Program becomes process when executable file loaded into memory

« Execution of program started via GUI mouse clicks, command line entry of

ItS name, etc

 One program can be several processes

« Consider multiple users executing the same program

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

max

Process in Memory

stack

heap

data

text

04-03-2023



Process State

» As a process executes, it changes state

 new: The process is being created

running: Instructions are being executed

walting: The process is waiting for some event to occur

ready. The process is waiting to be assigned to a processor

terminated: The process has finished execution

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



Diagram of Process State

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



T A

iInformation associated with each process

(also called task control block)

Process state — running, waiting, etc

Program counter — location of instruction to next
execute

CPU registers — contents of all process-centric registers

CPU scheduling information- priorities, scheduling
gueue pointers

Memory-management information — memory allocated
to the process

Accounting information — CPU used, clock time elapsed
since start, time limits

|/0 status information — 1/0 devices allocated to
process, list of open files

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Srocess Control Block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

04-03-2023



o~ . =0 WitCh —

VT Process to Process

process P, operating system process P,

interrupt or system call

executing // l

™ save state into PCBy,

reload state from PCB,

> idle interrupt or system call

Il T

save state into PCB,

P reload state from PCB,

exeCUting '\

- idle

executing

> idle

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

04-03-2023



Threads

. S0 far, process has a single thread of execution

« Consider having multiple program counters per process
« Multiple locations can execute at once

e Multiple threads of control -> threads

« Must then have storage for thread details, multiple program counters in
PCB

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

04-03-2023



N

pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task struct *parent; /* this process's parent */
struct list head children; /* this process's children */
struct files struct *files; /* list of open fTiles */
struct mm_struct *mm; /* address space of this process */

"Process Representation

IN LINnuXx

Represented by the C structure task struct

Yl Wl

struct task_struct
process information

struct task_struct
process information

struct task_struct
process information

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

w__“

t

current

x_ S R _/

{currently executing proccess)

S

04-03-2023



rocess Scheduling

« Maximize CPU use, quickly switch processes onto CPU for time sharing
* Process scheduler selects among available processes for next execution on CPU

e Maintains scheduling queues of processes
» Job queue —set of all processes in the system

* Ready gueue —set of all processes residing in main memory, ready and

waiting to execute
* Device gueues - set of processes waiting for an 1/0 device

* Processes migrate among the various queues

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



Ready ueue And
Various I/0 Device Queues

INSTHTUTIONS,
queue header PCB- PCB.
ready head Lo = - =
queue tail ~ registers registers
mag e 1 /
tape " -
unit O tail 7 s
mag head J+——=
ape
uni%cj1 tail 1 PCB,; PCB,, PCBg

disk head 4
unit O tail ~\
PCBs
terminal head - =

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



Representation of
Process Scheduling

®m Queueing diagram represents gqueues, resources, flows

o ready queue CPU >
/O queue R— /O request I —
time slice :
expired

child fork a
@‘— child .
interrupt walit for an -
oCcCcurs interrupt

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023




Schedulers

* Short-termscheduler (or CPU scheduler) - selects which process should be

executed next and allocates CPU
« Sometimes the only scheduler in a system

» Short-term scheduler is invoked frequently (milliseconds) = (must be fast)

* Long-term scheduler (or job scheduler) - selects which processes should be

brought into the ready queue

» Long-term scheduleris invoked infrequently (seconds, minutes) = (may be

slow)

* The long-term scheduler controls the degree of multiprogramming

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



p— | Schedulers

* Processes can be described as either:
« 1/0-bound process - spends more time doing 1/0 than computations, many
short CPU bursts
« CPU-bound process - spends more time doing computations; few very long

CPU bursts

» Long-term scheduler strives for good process mix

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



——— T—

Additin of
' Medium Term Scheduling

Medium-term scheduler can be added if degree of multiple programming

needs to decrease

e Remove process from memory, store on disk, bring back in from disk to

continue execution: swapping

swap in partially executed swap out
swapped-out processes

: ready queue @} » end
—
170 waiting
queues

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023




| Multitasking in
Mobile Systems

* Due to screen real estate, user interface limits iOS provides for a
 Single foreground process- controlled via user interface
« Multiple background processes—in memory, running, but not on the
display, and with limits
« Android runs foreground and background, with fewer limits
e Background process uses a service to perform tasks
 Service can keep running even if background process is suspended

 Service has no user interface, small memory use

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



Context Switch

When CPU switches to another process, the system must save the state of the old

process and load the saved state for the new process via a context switch

Context of a process represented in the PCB

Context-switch time is overhead; the system does no useful work while switching

* The more complex the OS and the PCB = the longer the context switch

Time dependent on hardware support

e Some hardware provides multiple sets of registers per CPU =» multiple

contexts loaded at once

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



Operations on Processes

« System must provide mechanisms for:
* process creation,
e process termination,

e and so on as detailed next

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



Process Creation

Parent process create children processes, which, in turn create other

processes, forming a tree of processes

Generally, process identified and managed via a process identifier (pid)

Resource sharing options

e Parent and children share all resources
e Children share subset of parent’s resources
e Parent and child share no resources

Execution options

e Parent and children execute concurrently
« Parent waits until children terminate

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



A Tree of Processes in Linux

UNSTITUTIONS,

;I

sshd
pid = 3028

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

bash
pid = 8416

tcsch
pid = 4005

pPs
pid = 9298

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



Process Creation (Cont.)

 Child duplicate of parent
 Child has a program loaded into it

o UNIX examples
 fork() system call creates new process

» exec() system call used after a fork() to replace the process’ memory
Space with a new program

parent o resumes

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023




Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Drogram
Forking Separate Process

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h:>

int main()

{
pid t pid;
/* fork a child process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;
}
else if (pid == 0) { /* child process =*/
execlp("/bin/1s","1s" ,NULL) ;
}
else { /* parent process */
S * parent will wait for the child to complete * /
wait (NULL) ;
printf("Child Complete");
}
return 0;
1

04-03-2023



Process Termination

* Process executes last statement and then asks the operating system to delete it

using the exit() system call.

e Returns status data from child to parent (via wait())
* Process’ resources are deallocated by operating system

« Parent may terminate the execution of children processes using the abort()

system call. Some reasons for doing so:

* Child has exceeded allocated resources
 Task assigned to child is no longer required

e The parent is exiting and the operating systems does not allow a child to
continue if its parent terminates

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



Process Termination

- Some operating systems do not allow child to exists if its parent has terminated.

If a process terminates, then all its children must also be terminated.

« cascading termination. All children, grandchildren, etc. are terminated.
e The termination is initiated by the operating system.

* The parent process may wait for termination of a child process by using the
wart()systemcall. The call returns status information and the pid of the
terminated process

pid = wairt(&status);

* If no parent waiting (did not invoke wait()) processisazombie
o If parent terminated without invoking wait, processisan orphan

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



TEXT BOOK
1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10t Edition, John Wiley &

Sons, Inc., 2018.
2.Jane W. and S. Liu. “Real-Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

REFERENCES

1. William Stallings, “Operating Systems: Internals and Design Principles”,9t"Edition, Prentice Hall of India., 2018.
2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach” 3"Edition, Tata McGraw hill 2016.
3. P.C.Bhatt, “An Introduction to Operating Systems—Concepts and Practice" 4" Edition, Prentice Hall of India., 2013.

THANK YOU

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 04-03-2023



