
UNIT I

INTRODUCTION

UNIT I

INTRODUCTION

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Introduction
• Introduction

• What Operating Systems Do
• Computer-System Architecture
• Operating-System Structure
• Operating-System Operations
• Operating-System Services
• User Operating System Interface
• System Calls
• Types of System Calls
• System Programs
• System Boot

Introduction
• Process Concept

• Process Scheduling
• Operations on Processes
• Interprocess Communication

04-03-2023

• An operating system executes a variety of programs:
• Batch system – jobs
• Time-shared systems – user programs

• Textbook uses the terms job and process almost interchangeably
• Process – a program in execution; process execution must progress in sequential

fashion
• Multiple parts

• The program code, also called text section
• Current activity including program counter
• Stack containing temporary data

• Function parameters, return addresses, local variables
• Data section containing global variables
• Heap containing memory dynamically allocated during run time

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Process Concept
An operating system executes a variety of programs:

user programs or tasks
almost interchangeably

a program in execution; process execution must progress in sequential

text section
counter, processor registers

Function parameters, return addresses, local variables
containing global variables

containing memory dynamically allocated during run time

04-03-2023

Process Concept (Cont.)

• Program is passive entity stored on disk (

• Program becomes process when executable file loaded into memory

• Execution of program started via GUI mouse clicks, command line entry of

its name, etc

• One program can be several processes

• Consider multiple users executing the same program

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Process Concept (Cont.)

entity stored on disk (executable file), process is active

Program becomes process when executable file loaded into memory

Execution of program started via GUI mouse clicks, command line entry of

One program can be several processes

Consider multiple users executing the same program

04-03-2023

Process in Memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Process in Memory

04-03-2023

• As a process executes, it changes state

• new: The process is being created

• running: Instructions are being executed

• waiting: The process is waiting for some event to occur

• ready: The process is waiting to be assigned to a processor

• terminated: The process has finished execution

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Process State

: Instructions are being executed

: The process is waiting for some event to occur

: The process is waiting to be assigned to a processor

: The process has finished execution

04-03-2023

Diagram of Process State

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Diagram of Process State

04-03-2023

Process Control Block (PCB)
Information associated with each process
(also called task control block)
• Process state – running, waiting, etc
• Program counter – location of instruction to next

execute
• CPU registers – contents of all process-centric registers
• CPU scheduling information- priorities, scheduling

queue pointers
• Memory-management information – memory allocated

to the process
• Accounting information – CPU used, clock time elapsed

since start, time limits
• I/O status information – I/O devices allocated to

process, list of open files
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Process Control Block (PCB)

location of instruction to next

centric registers
priorities, scheduling

memory allocated

CPU used, clock time elapsed

I/O devices allocated to

04-03-2023

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

CPU Switch From
Process to Process

04-03-2023

• So far, process has a single thread of execution

• Consider having multiple program counters per process

• Multiple locations can execute at once

• Multiple threads of control ->

• Must then have storage for thread details, multiple program counters in

PCB

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Threads

So far, process has a single thread of execution

Consider having multiple program counters per process

Multiple locations can execute at once

> threads

Must then have storage for thread details, multiple program counters in

04-03-2023

Process Representation

Represented by the C structure task_struct

pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process
struct list_head children; /* this process
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Process Representation
in Linux

task_struct

unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

04-03-2023

Process Scheduling

• Maximize CPU use, quickly switch processes onto CPU for time sharing

• Process scheduler selects among available processes for next execution on CPU

• Maintains scheduling queues of processes

• Job queue – set of all processes in the system

• Ready queue – set of all processes residing in main memory, ready and

waiting to execute

• Device queues – set of processes waiting for an I/O device

• Processes migrate among the various queues

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Process Scheduling

Maximize CPU use, quickly switch processes onto CPU for time sharing

selects among available processes for next execution on CPU

of processes

set of all processes in the system

set of all processes residing in main memory, ready and

set of processes waiting for an I/O device

Processes migrate among the various queues

04-03-2023

Various I/O Device Queues

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Ready Queue And
Various I/O Device Queues

04-03-2023

 Queueing diagram represents queues, resources, flows

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Representation of
Process Scheduling

represents queues, resources, flows

04-03-2023

• Short-term scheduler (or CPU scheduler

executed next and allocates CPU

• Sometimes the only scheduler in a system

• Short-term scheduler is invoked frequently (milliseconds)

• Long-term scheduler (or job scheduler

brought into the ready queue

• Long-term scheduler is invoked infrequently (seconds, minutes)

slow)

• The long-term scheduler controls the

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Schedulers

CPU scheduler) – selects which process should be

Sometimes the only scheduler in a system

term scheduler is invoked frequently (milliseconds)  (must be fast)

job scheduler) – selects which processes should be

term scheduler is invoked infrequently (seconds, minutes)  (may be

term scheduler controls the degree of multiprogramming

04-03-2023

• Processes can be described as either:

• I/O-bound process – spends more time doing I/O than computations, many

short CPU bursts

• CPU-bound process – spends more time doing computations; few very long

CPU bursts

• Long-term scheduler strives for good process mix

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Schedulers

spends more time doing I/O than computations, many

spends more time doing computations; few very long

process mix

04-03-2023

Medium Term Scheduling
 Medium-term scheduler can be added if degree of multiple programming

needs to decrease

 Remove process from memory, store on disk, bring back in from disk to

continue execution: swapping

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Addition of
Medium Term Scheduling
can be added if degree of multiple programming

Remove process from memory, store on disk, bring back in from disk to

04-03-2023

Multitasking in
Mobile Systems

• Due to screen real estate, user interface limits iOS provides for a

• Single foreground process- controlled via user interface

• Multiple background processes– in memory, running, but not on the

display, and with limits

• Android runs foreground and background, with fewer limits

• Background process uses a service

• Service can keep running even if background process is suspended

• Service has no user interface, small memory use

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Multitasking in
Mobile Systems

Due to screen real estate, user interface limits iOS provides for a

controlled via user interface

in memory, running, but not on the

Android runs foreground and background, with fewer limits

to perform tasks

Service can keep running even if background process is suspended

Service has no user interface, small memory use

04-03-2023

Context Switch

• When CPU switches to another process, the system must

process and load the saved state for the new process via a

• Context of a process represented in the PCB

• Context-switch time is overhead; the system does no useful work while switching

• The more complex the OS and the PCB

• Time dependent on hardware support

• Some hardware provides multiple sets of registers per CPU

contexts loaded at once

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Context Switch

When CPU switches to another process, the system must save the state of the old

for the new process via a context switch

of a process represented in the PCB

switch time is overhead; the system does no useful work while switching

The more complex the OS and the PCB  the longer the context switch

Some hardware provides multiple sets of registers per CPU multiple

04-03-2023

Operations on Processes

• System must provide mechanisms for:

• process creation,

• process termination,

• and so on as detailed next

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Operations on Processes

04-03-2023

Process Creation

• Parent process create children processes, which, in turn create other

processes, forming a tree of processes

• Generally, process identified and managed via a

• Resource sharing options
• Parent and children share all resources
• Children share subset of parent’s resources
• Parent and child share no resources

• Execution options
• Parent and children execute concurrently
• Parent waits until children terminate

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Process Creation

processes, which, in turn create other

Generally, process identified and managed via a process identifier (pid)

Parent and children share all resources
s resources

Parent and child share no resources

Parent and children execute concurrently
Parent waits until children terminate

04-03-2023

A Tree of Processes in Linux

login
pid = 8415

khelper
pid = 6

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

A Tree of Processes in Linux
init

pid = 1

sshd
pid = 3028

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

04-03-2023

Process Creation (Cont.)
• Address space

• Child duplicate of parent
• Child has a program loaded into it

• UNIX examples
• fork() system call creates new process
• exec() system call used after a fork()

space with a new program

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Process Creation (Cont.)

Child has a program loaded into it

system call creates new process
fork() to replace the process’ memory

04-03-2023

Forking Separate Process

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

C Program
Forking Separate Process

04-03-2023

Process Termination

• Process executes last statement and then asks the operating system to delete it

using the exit() system call.
• Returns status data from child to parent (via
• Process’ resources are deallocated by operating system

• Parent may terminate the execution of children processes using the

system call. Some reasons for doing so:
• Child has exceeded allocated resources
• Task assigned to child is no longer required
• The parent is exiting and the operating systems does not allow a child to

continue if its parent terminates

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Process Termination

Process executes last statement and then asks the operating system to delete it

Returns status data from child to parent (via wait())
resources are deallocated by operating system

Parent may terminate the execution of children processes using the abort()

Child has exceeded allocated resources
Task assigned to child is no longer required
The parent is exiting and the operating systems does not allow a child to

04-03-2023

Process Termination
• Some operating systems do not allow child to exists if its parent has terminated.

If a process terminates, then all its children must also be terminated.
• cascading termination. All children, grandchildren, etc. are terminated.
• The termination is initiated by the operating system.

• The parent process may wait for termination of a child process by using the

wait()system call. The call returns status information and the pid of the

terminated process

pid = wait(&status);

• If no parent waiting (did not invoke wait()
• If parent terminated without invoking

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Process Termination
Some operating systems do not allow child to exists if its parent has terminated.

If a process terminates, then all its children must also be terminated.
All children, grandchildren, etc. are terminated.

The termination is initiated by the operating system.

The parent process may wait for termination of a child process by using the

The call returns status information and the pid of the

wait()) process is a zombie
If parent terminated without invoking wait , process is an orphan

04-03-2023

TEXT BOOK
1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10

Sons, Inc., 2018.

2. Jane W. and S. Liu. “Real-Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3

3. P.C.Bhatt, “An Introduction to Operating Systems–Concepts and Practice",4

REFERENCES

1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10th Edition, John Wiley &

Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9th Edition, Prentice Hall of India., 2018.

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3rdEdition, Tata McGraw hill 2016.

Concepts and Practice",4th Edition, Prentice Hall of India., 2013.

THANK YOU

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 04-03-2023

