
UNIT I

INTRODUCTION

UNIT I

INTRODUCTION

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Introduction
• Introduction

• What Operating Systems Do
• Computer-System Architecture
• Operating-System Structure
• Operating-System Operations
• Operating-System Services
• User Operating System Interface
• System Calls
• Types of System Calls
• System Programs
• System Boot

2

15-02-2023

Introduction
• Process Concept

• Process Scheduling
• Operations on Processes
• Interprocess Communication

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high

Interface (API) rather than direct system call use

• Three most common APIs are Win32 API

POSIX-based systems (including virtually all versions of UNIX, Linux, and

Mac OS X), and Java API for the Java virtual machine (JVM)

3

15-02-2023

System Calls

to the services provided by the OS

level language (C or C++)

Mostly accessed by programs via a high-level Application Programming

rather than direct system call use

Win32 API for Windows, POSIX API for

based systems (including virtually all versions of UNIX, Linux, and

for the Java virtual machine (JVM)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Example of System Calls

• System call sequence to copy the contents of one file to another file

4

15-02-2023

Example of System Calls

System call sequence to copy the contents of one file to another file

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Example of Standard API 5

15-02-2023

Example of Standard API

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

System Call Implementation

• Typically, a number associated with each system call

• System-call interface maintains a table indexed according to these numbers

• The system call interface invokes the intended system call in OS kernel

returns status of the system call and any return values

• The caller need know nothing about how the system call is implemented

• Just needs to obey API and understand what OS will do as a result call

• Most details of OS interface hidden from programmer by API

• Managed by run-time support library

6

15-02-2023

System Call Implementation

Typically, a number associated with each system call

maintains a table indexed according to these numbers

invokes the intended system call in OS kernel and

of the system call and any return values

The caller need know nothing about how the system call is implemented

Just needs to obey API and understand what OS will do as a result call

Most details of OS interface hidden from programmer by API

time support library

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

API
7

15-02-2023

API – System Call –
OS Relationship

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

• Three general methods used to pass parameters to the OS

• Simplest: pass the parameters in registers

• Parameters stored in a block, or table

as a parameter in a register

• This approach taken by Linux and Solaris

• Parameters placed, or pushed, onto the

stack by the operating system

8

15-02-2023

System Call
Parameter Passing

used to pass parameters to the OS

pass the parameters in registers

or table, in memory, and address of block passed

This approach taken by Linux and Solaris

onto the stack by the program and popped off the

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Parameter Passing via Table
9

15-02-2023

Parameter Passing via Table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Types of System Calls
• Process control

• create process, terminate process

• end, abort , load, execute

• get process attributes, set process attributes

• wait for time , wait event, signal event

• allocate and free memory

• Dump memory if error

• Debugger for determining bugs, single step

• Locks for managing access to shared data between processes

10

15-02-2023

Types of System Calls

get process attributes, set process attributes

wait for time , wait event, signal event

bugs, single step execution

for managing access to shared data between processes

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Types of System Calls

• File management

• create file, delete file

• open, close file , read, write, reposition

• get and set file attributes

• Device management

• request device, release device

• read, write, reposition

• get device attributes, set device attributes

• logically attach or detach devices

11

15-02-2023

Types of System Calls

open, close file , read, write, reposition

get device attributes, set device attributes

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Types of System Calls (Cont.)

• Information maintenance
• get time or date, set time or date
• get system data, set system data
• get and set process, file, or device attributes

• Communications
• create, delete communication connection
• send, receive messages if message passing model
• Shared-memory model create and gain access to memory regions
• transfer status information
• attach and detach remote devices

Protection
Control access to resources
Get and set permissions
Allow and deny user access

12

15-02-2023

Types of System Calls (Cont.)

get and set process, file, or device attributes

message passing model to host name or process name
create and gain access to memory regions

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Examples of Windows and 13

15-02-2023

Examples of Windows and
Unix System Calls

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Standard C Library Example
• C program invoking printf() library call, which calls write() system call

14

15-02-2023

Standard C Library Example
C program invoking printf() library call, which calls write() system call

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Example: MS

• Single-tasking

• Shell invoked when system booted

• Simple method to run program

• No process created

• Single memory space

• Loads program into memory,

overwriting all but the kernel

• Program exit -> shell reloaded

15

15-02-2023

Example: MS-DOS

At system startup running a program

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Example: FreeBSD

• Unix variant , Multitasking

• User login -> invoke user’s choice of shell

• Shell executes fork() system call to create process

• Executes exec() to load program into process

• Shell waits for process to terminate or continues

with user commands

• Process exits with:

• code = 0 – no error

• code > 0 – error code

16

15-02-2023

Example: FreeBSD

system call to create process

to load program into process

Shell waits for process to terminate or continues

2/15/2023

TEXT BOOK
1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10

Sons, Inc., 2018.

2. Jane W. and S. Liu. “Real-Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3

3. P.C.Bhatt, “An Introduction to Operating Systems–Concepts and Practice",4

REFERENCES

1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10th Edition, John Wiley &

Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9th Edition, Prentice Hall of India., 2018.

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3rdEdition, Tata McGraw hill 2016.

Concepts and Practice",4th Edition, Prentice Hall of India., 2013.

THANK YOU

OS / Dr.B.Anuradha/ CSD/ SNSCE

