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Introduction
• Introduction

• What Operating Systems Do
• Computer-System Architecture
• Operating-System Structure
• Operating-System Operations
• Operating-System Services
• User Operating System Interface
• System Calls
• Types of System Calls
• System Programs
• System Boot
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Introduction
• Process Concept

• Process Scheduling
• Operations on Processes
• Interprocess Communication
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• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high

Interface (API) rather than direct system call use

• Three most common APIs are Win32 API 

POSIX-based systems (including virtually all versions of UNIX, Linux, and 

Mac OS X), and Java API for the Java virtual machine (JVM)
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System Calls

to the services provided by the OS

level language (C or C++)

Mostly accessed by programs via a high-level Application Programming 

rather than direct system call use

Win32 API for Windows, POSIX API for 

based systems (including virtually all versions of UNIX, Linux, and 

for the Java virtual machine (JVM)
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Example of System Calls

• System call sequence to copy the contents of one file to another file
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Example of System Calls

System call sequence to copy the contents of one file to another file
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Example of Standard API 5
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Example of Standard API



Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

System Call Implementation

• Typically, a number associated with each system call

• System-call interface maintains a table indexed according to these numbers

• The system call interface invokes  the intended system call in OS kernel 

returns status of the system call and any return values

• The caller need know nothing about how the system call is implemented

• Just needs to obey API and understand what OS will do as a result call

• Most details of  OS interface hidden from programmer by API  

• Managed by run-time support library
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System Call Implementation

Typically, a number associated with each system call

maintains a table indexed according to these numbers

invokes  the intended system call in OS kernel and 

of the system call and any return values

The caller need know nothing about how the system call is implemented

Just needs to obey API and understand what OS will do as a result call

Most details of  OS interface hidden from programmer by API  

time support library
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API 
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API – System Call –
OS Relationship
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• Three general methods used to pass parameters to the OS

• Simplest:  pass the parameters in registers

• Parameters stored in a block, or table

as a parameter in a register 

• This approach taken by Linux and Solaris

• Parameters placed, or pushed, onto the 

stack by the operating system
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System Call 
Parameter Passing

used to pass parameters to the OS

pass the parameters in registers

or table, in memory, and address of block passed 

This approach taken by Linux and Solaris

onto the stack by the program and popped off the 
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Parameter Passing via Table
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Parameter Passing via Table
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Types of System Calls
• Process control

• create process, terminate process

• end, abort , load, execute

• get process attributes, set process attributes

• wait for time , wait event, signal event

• allocate and free memory

• Dump memory if error

• Debugger for determining bugs, single step 

• Locks for managing access to shared data between processes
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Types of System Calls

get process attributes, set process attributes

wait for time , wait event, signal event

bugs, single step execution

for managing access to shared data between processes
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Types of System Calls

• File management

• create file, delete file

• open, close file , read, write, reposition

• get and set file attributes

• Device management

• request device, release device

• read, write, reposition

• get device attributes, set device attributes

• logically attach or detach devices
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Types of System Calls

open, close file , read, write, reposition

get device attributes, set device attributes
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Types of System Calls (Cont.)

• Information maintenance
• get time or date, set time or date
• get system data, set system data
• get and set process, file, or device attributes

• Communications
• create, delete communication connection
• send, receive messages if message passing model 
• Shared-memory model create and gain access to memory regions
• transfer status information
• attach and detach remote devices

Protection
Control access to resources
Get and set permissions
Allow and deny user access
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Types of System Calls (Cont.)

get and set process, file, or device attributes

message passing model to host name or process name
create and gain access to memory regions
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Examples of Windows and  13
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Examples of Windows and  
Unix System Calls
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Standard C Library Example
• C program invoking printf() library call, which calls write() system call
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Standard C Library Example
C program invoking printf() library call, which calls write() system call
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Example: MS

• Single-tasking

• Shell invoked when system booted

• Simple method to run program

• No process created

• Single memory space

• Loads program into memory, 

overwriting all but the kernel

• Program exit -> shell reloaded
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Example: MS-DOS

At system startup          running a program
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Example: FreeBSD

• Unix variant , Multitasking

• User login -> invoke user’s choice of shell

• Shell executes fork( ) system call to create process

• Executes exec( ) to load program into process

• Shell waits for process to terminate or continues 

with user commands

• Process exits with:

• code = 0 – no error 

• code > 0 – error code
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Example: FreeBSD

system call to create process

to load program into process

Shell waits for process to terminate or continues 
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