UNIT |

INTRODUCTION

~CALL LU - -
- h RESOL m:Es

ERQTING

el

e Introduction

What Operating Systems Do
Computer-System Architecture
Operating-System Structure
Operating-System Operations
Operating-System Services

User Operating System Interface
System Calls

Types of System Calls

System Programs

System Boot

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Introduction

e Process Concept
* Process Scheduling
» Operations on Processes
 Interprocess Communication

15-02-2023

System Calls ;

e Programming interface to the services provided by the OS
 Typically written in a high-level language (C or C++)

e Mostly accessed by programs via a high-level Application Programming

Interface (API) rather than direct system call use

e Three most common APIs are Win32 API for Windows, POSIX API for
POSIX-based systems (including virtually all versions of UNIX, Linux, and

Mac OS X), and Java API for the Java virtual machine (JVM)

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 15-02-2023

IN

Example of System Calls

 System call sequence to copy the contents of one file to another file

source file »| destination file

4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally Y,

b

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 15-02-2023

ample of Standard APl

EXAMPILE OF STANDARIY APT

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man raead

on the command line. A description of this API appears below:

#include <=unistd._.lh>

ssi=ze & read{int £4, woilid *buf, size bt ocount)
| | 1 | |]
returm function parameaters
wvalue namaeae

A program that uses the read () function must include theunistd.h header
file, as this file defines the ssize t and size t data tvpes (among other
things). The parameters passed to read () are as follows:
= imnt fd—the file descriptor to be read
® wvoid =*buf-—a buffer where the data will be read into
size t count—the maximum number of bytes to be read into the
buffer

On a successful read. the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read {) returns —1.

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

15-02-2023

ysem Call Implementation

. Typically, a number associated with each system call
« System-call interface maintains a table indexed according to these numbers
* The system call interface invokes the intended system call in OS kernel and
returns status of the system call and any return values
* The caller need know nothing about how the system call is implemented
o Just needs to obey API and understand what OS will do as a result call
e Most details of OS interface hidden from programmer by API

* Managed by run-time support library

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 15-02-2023

s i Stem =
OS Relationship

/NSTITUT ONS;

user application

open ()
user
mode
system call interface
kernel
mode A
>| open ()
* |mplementation
» of open ()
. system call
return

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 15-02-2023

System Call
Parameter Passing

* Three general methods used to pass parameters to the OS
o Simplest: pass the parameters in registers

* Parameters stored in a block, or table, in memory, and address of block passed

as a parameter in a register
» This approach taken by Linux and Solaris

» Parameters placed, or pushed, onto the stack by the program and popped off the

stack by the operating system

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 15-02-2023

TS Parameter Passing via Table

—b X

register

X: parameters
for call

— ™ use parameters code for
load address X from table X system
system call 13 — > call 13

user program

operating system

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 15-02-2023

R e s

Types of System Calls

* Create process, terminate Process

end, abort, load, execute

get process attributes, set process attributes

wait for time , wait event, signal event

allocate and free memory

Dump memory if error

Debugger for determining bugs, single step execution

Locks for managing access to shared data between processes

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

15-02-2023

Types of System Calls .

* File management
o create file, delete file
» open, close file, read, write, reposition

e get and set file attributes

e Device management
e request device, release device
* read, write, reposition
 get device attributes, set device attributes

* logically attach or detach devices

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 15-02-2023

ypes of System Calls (Cont.) =

Information maintenance
o get time or date, set time or date
e get system data, set system data
» get and set process, file, or device attributes

e« Communications
» create, delete communication connection
* send, receive messages if message passing model to host name or process name
« Shared-memory model create and gain access to memory regions
 transfer status information

» attach and detach remote devices
Protection

Control access to resources

Get and set permissions

Allow and deny user access

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS 15-02-2023

sy

w1 1U T/LNS

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Windows

CreateProcess ()
ExitProcess ()
WaitForSingleObject ()

CreateFile ()
ReadFile ()
WriteFile ()
CloseHandle ()

SetConsoleMode ()
ReadConsole()
WriteConsole()

GetCurrentProcessID{()
SetTimer ()
Sleep()

CreatePipe ()
CreateFileMapping ()
MapViewOfFile()

SetFileSecurity ()
InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Examples of Windows and
Unix System Calls

Unix

fork ()
exit ()
walt ()

open()
read ()
write()
close ()

ioctl ()
read ()

write()

getpid ()
alarm{)
sleep()

pipe O
shmget ()
mmap ()

chmod ()
umask ()
chown()

15-02-2023

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

user

#include <stdio.h>
int main {)

{

printf ("Greetings"); |-

refurn O;
}

mode

kernel

standard C library

mode
Qﬁt& () >

write ()
system call

15-02-2023

 Single-tasking

Shell invoked when system booted

free memory

Simple method to run program

 No process created

I command
 Single memory space kbl
 Loads program into memory, kernel

(a)

overwriting all but the kernel
At system startup

Program exit -> shell reloaded

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Example: MS-DOS

free memory

process

command
interpreter

kernel

(b)
running a program

15

15-02-2023

S

-xample: FreeBSD

process D

» User login -> invoke user’s choice of shell
free memory

« Shell executes fork() system call to create process

: rocess C
o Executes exec() to load program into process P
 Shell waits for process to terminate or continues interpreter
with user commands
_ _ process B
e Process exits with:
e code=0-noerror Vo]

e code>0-errorcode

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

16

15-02-2023

TEXT BOOK
1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10t Edition, John Wiley &

Sons, Inc., 2018.
2.Jane W. and S. Liu. “Real-Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

REFERENCES

1. William Stallings, “Operating Systems: Internals and Design Principles”,9t"Edition, Prentice Hall of India., 2018.
2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach” 3"Edition, Tata McGraw hill 2016.
3. P.C.Bhatt, “An Introduction to Operating Systems—Concepts and Practice" 4" Edition, Prentice Hall of India., 2013.

THANK YOU

2/15/2023 0OS/ Dr.B.Anuradha/ CSD/ SNSCE

