UNIT I

Operating

Systems

INTRODUCTION

Introduction

Introduction

- What Operating Systems Do
- Computer-System Architecture
- Operating-System Structure
- Operating-System Operations
- Operating-System Services
- User Operating System Interface
- System Calls
- Types of System Calls
- System Programs
- Operating System Structure
- System Boot

Process Concept

- Process Scheduling
- Operations on Processes
- Interprocess Communication

2

Computer-System Architecture

- Most systems use a single general-purpose processor
- Multiprocessors systems growing in use and importance
 - Also known as parallel systems, tightly-coupled systems
 - Advantages include:
 - 1. Increased throughput
 - 2. Economy of scale
 - 3. Increased reliability graceful degradation or fault tolerance
 - Two types:
 - **1. Asymmetric Multiprocessing** each processor is assigned a specific task.

2. Symmetric Multiprocessing – each processor performs all tasks

- Multi-chip and multicore
- Systems containing all chips
 - Chassis containing multiple separate systems

5

Clustered Systems

- Like multiprocessor systems, but multiple systems working together
 - Usually sharing storage via a **storage-area network (SAN)**
 - Provides a high-availability service which survives failures
 - Asymmetric clustering has one machine in hot-standby mode
 - Symmetric clustering has multiple nodes running applications, monitoring each other
 - Some clusters are for **high-performance computing (HPC)**
 - Applications must be written to use parallelization
 - Some have **distributed lock manager (DLM)** to avoid conflicting operations

Multiprogramming (Batch system) needed for efficiency

- Single user cannot keep CPU and I/O devices busy at all times
- Multiprogramming organizes jobs (code and data) so CPU always has one to execute
- A subset of total jobs in system is kept in memory
- One job selected and run via job scheduling
- When it has to wait (for I/O for example), OS switches to another job

Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating **interactive** computing

- **Response time** should be < 1 second
- Each user has at least one program executing in memory ⇒ process
- If several jobs ready to run at the same time ⇒ CPU scheduling
- If processes don't fit in memory, swapping moves them in and out to run
- Virtual memory allows execution of processes not completely in memory

Multiprogrammed System

0	
0	operating system
	job 1
512M	job 2
	job 3
	job 4

- 1. Abraham Silberschatz, Peter B. Galvin, "Operating System Concepts", 10th Edition, John Wiley & Sons, Inc., 2018.
- 2. Jane W. and S. Liu. "Real-Time Systems". Prentice Hall of India 2018.
- 3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson, 2015.

REFERENCES

- 1. William Stallings, "Operating Systems: Internals and Design Principles",9th Edition, Prentice Hall of India., 2018.
- 2. D.M.Dhamdhere, "Operating Systems: A Concept based Approach", 3rdEdition, Tata McGraw hill 2016.
- 3. P.C.Bhatt, "An Introduction to Operating Systems–Concepts and Practice", 4th Edition, Prentice Hall of India., 2013.

THANK YOU