SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107
An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF MANAGEMENT STUDIES

COURSE NAME : 19BA106 FUNDAMENTALS OF DATA ANALYSIS

I YEAR /I SEMESTER

Unit 1 - EXPLORING DATA ANALYTICS

Topic 2: FDA - Descriptive statistics

Descriptive Statistics

$>$ Descriptive statistics are used to describe the basic features of the data in a study.
$>$ They provide simple summaries about the data.
$>$ Descriptive statistics help us to simplify large amounts of data in a sensible way.

Descriptive Statistics

$>$ Measures of Frequency - Count, Frequency and percentage.
$>$ Measures of Central Tendency - Mean, Median, and Mode
$>$ Measures of Dispersion or Variation - Range, Variance, Standard Deviation

Measures of Frequency - Count , Frequency and percentage.

$>$ Count (n) - it is a count of how many items or "observations" you have.
$>$ Frequency - the number of times the observation occurs in the data.
$>$ Percentage - One of the most frequent ways to represent statistics is by percentage. Percent simply means "per hundred" and the symbol used to express percentage is \%

Measures of Central Tendency Mean, Median, and Mode

$>$ The mean is the average of a data set.
$>$ The median is the middle value when a data set is ordered from least to greatest.
$>$ The mode is the number that occurs most often in a data set.

$>$ Measures of Dispersion or Variation Range, Variance, Standard Deviation

$>$ Range - The Range is the difference between the lowest and highest values.
>variance measures variability from the average or mean
$>$ standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while a high standard deviation indicates that the values are spread out over a wider range.

Data

Example

You and your friends have just measured the heights of your dogs (in millimetres):

The heights (at the shoulders) are: $600 \mathrm{~mm}, 470 \mathrm{~mm}, 170 \mathrm{~mm}, 430 \mathrm{~mm}$ and 300 mm .
so the mean (average) height is 394 mm . Let's plot this on the chart:

Variance

Now we calculate each dog's difference from the Mean:

Standard Deviation

15.12.2020 FDA - Descriptive statistics/19BA106, Fundamentals Of Data Analysis/Dr.V.Shanthaamani/MBA/SNSCE

RECAP

QUESTIONS???

THANK YOU

