Quiz question:

- 1. What are the three properties of algorithm?
 - Correctness
 - Termination
 - Efficiency
- 2. Enlist the procedure of algorithm?
 - Finite
 - Complete
 - Unique
 - Effective
- 3. <u>Correctness</u> checked measurement factors are testing and verification.
- 4. For each allowed input, the algorithm stops after a finite sequence of steps are known as <u>Termination.</u>
- 5. The part between do and end is called <u>body of the loop</u>.
- 6. Point out the control structures.
 - Sequence
 - Selection
 - Iteration

Diagrammatic puzzle: find the missing box and give the steps connection

Puzzles: Important problem types

Numerical problem

Manufacturer 2 Manufacturer 3 Manufacturer 4

Manufacturer 5

Criss-cross puzzle

Important types of problem

Across

- 2. find
- 5. character
- 6. equations
- 7. lines

Down

- 1. acceding order
- 3. points
- 4. subset

ANS: sorting, searching, string, graph, combinatorial, geometric, numerical

MCQ: Fundamentals of the Analysis of Algorithm Efficiency

- 1. Two main measures for the efficiency of an algorithm are
- a. Processor and memory
- b. Complexity and capacity
- c. Time and space
- d. Data and space
- 2. The time factor when determining the efficiency of algorithm is measured by
- a. Counting microseconds
- b. Counting the number of key operations
- c. Counting the number of statements
- d. Counting the kilobytes of algorithm
- 3. The space factor when determining the efficiency of algorithm is measured by
- a. Counting the maximum memory needed by the algorithm
- b. Counting the minimum memory needed by the algorithm
- c. Counting the average memory needed by the algorithm
- d. Counting the maximum disk space needed by the algorithm
- 4. Which of the following case does not exist in complexity theory
- a. Best case
- b. Worst case
- c. Average case
- d. Null case
- 5. The Worst case occur in linear search algorithm when
- a. Item is somewhere in the middle of the array
- b. Item is not in the array at all
- c. Item is the last element in the array
- d. Item is the last element in the array or is not there at all
- 6. The Average case occur in linear search algorithm
- a. When Item is somewhere in the middle of the array
- b. When Item is not in the array at all
- c. When Item is the last element in the array
- d. When Item is the last element in the array or is not there at all
- 7. The complexity of the average case of an algorithm is
- a. Much more complicated to analyze than that of worst case
- b. Much more simpler to analyze than that of worst case
- c. Sometimes more complicated and some other times simpler than that of worst case
- d. None or above

Answers

1. c 2.b 3.a 4.d 5.d 6.a 7.a

Word search

Analysis of algorithm efficiency

G	В	Р	E	L	А	В	А	А	G	Т	0	Q	М	Κ
В	Х	Ι	F	S	R	S	L	J	R	S	А	E	G	Q
R	F	Η	F	D	Q	G	K	U	Ν	Y	K	L	J	K
U	N	М	Ι	E	0	K	R	0	W	E	Μ	А	R	F
U	Q	0	С	R	U	K	D	Ι	Т	Х	Х	С	Η	E
В	N	А	Ι	R	Р	А	Х	Y	Х	Е	0	Ι	W	Т
Η	Р	Т	E	Т	Т	Ζ	L	А	Y	Η	F	Т	W	L
S	Н	С	N	F	А	W	L	С	K	E	G	Ι	V	D
Μ	K	0	С	Н	L	R	Ι	K	Ζ	F	E	R	Х	R
Т	Р	Ν	Y	G	V	J	E	R	Ζ	М	А	С	D	R
N	Y	G	0	В	S	В	А	Р	Ι	L	S	W	S	R
D	N	F	Η	E	Х	W	Y	Ν	0	С	K	L	Т	Т
K	Н	D	K	Q	М	С	Х	А	V	S	Ι	G	W	R
Т	Ι	М	E	N	Ν	0	Ι	0	0	Ι	V	F	W	Е
Ι	Т	G	F	Х	Е	Р	Н	Н	L	Y	А	Y	А	Q

ALGORITHM	CRITICAL	EFFICIENCY
FRAMEWORK	OPERATION	SPACE
TIME		

Puzzle : Match the following

- O notation: $f(n) \stackrel{"}{\geq} g(n)$
- Ω notation: $f(n) \stackrel{\text{``\leq''}}{=} g(n)$
- Θ notation: $f(n) \stackrel{\text{``\leq''}}{=} g(n)$

Answer:

2 3 1

Puzzle: Fill in the blank

- _____on parameter n indicating input size
- _____algorithm's basic operation
- worst, average, and best case for input of size n
- _____a recurrence relation and initial condition(s) for C(n)-the number of times the basic operation will be executed for an input of size n
- _____the recurrence to obtain a closed form or estimate the order of magnitude of the solution
- Decide
- Identify
- Determine
- Set up
- Solve