SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107
An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME : 19EE101-BASIC ELECTRICAL \& ELECTRONICS ENGINEERING

I YEAR /I SEMESTER CSE \& CST

Unit 5: Linear and Digital Electronics

Topic : Inverting and Non Inverting Amplifier

GRADUATE ATTRIBUTES

REVIEW OF OPERATIONAL AMPLIFIER

- Op-amps (amplifiers/buffers in general) are drawn as a triangle in a circuit schematic
- There are two inputs
- inverting and non-inverting
- And one output
- Also power connections (note no explicit ground)

GOLDEN RULES OF OP-AMP

When an op-amp is configured in any negative-feedback arrangement, it will obey the following two rules:

The inputs to the op-amp draw or source no current (true whether negative feedback or not)

The op-amp output will do whatever it can (within its limitations) to make the voltage difference between the two inputs zero

INVERTING AMPLIFIER

OPERATIONAL AMPLIFIER

- Applying the rules: - terminal at "virtual ground" so current through R_{1} is $I_{\mathrm{f}}=V_{\text {in }} / R_{1}$
- Current does not flow into op-amp (one of our rules)
- so the current through R_{1} must go through R_{2}
- voltage drop across R_{2} is then $I_{\mathrm{f}} R_{2}=V_{\mathrm{in}} \times\left(R_{2} / R_{1}\right)$
- So $V_{\text {out }}=0-V_{\text {in }} \times\left(R_{2} / R_{1}\right)=-V_{\text {in }} \times\left(R_{2} / R_{1}\right)$ Thus we amplify $V_{\text {in }}$ by factor $-R_{2} / R_{1}$
- negative sign earns title "inverting" amplifier
- Current is drawn into op-amp output terminal

NON INVERTING AMPLIFIER

//x

OPERATIONAL AMPLIFIER

- Now neg. terminal held at $V_{\text {in }}$. so current through R_{1} is $I_{\mathrm{f}}=V_{\text {in }} / R_{1}$ (to left, into ground)
- This current cannot come from op-amp input
- so comes through R_{2} (delivered from op-amp output)
- voltage drop across R_{2} is $I_{\mathrm{f}} R_{2}=V_{\text {in }} \times\left(R_{2} / R_{1}\right)$
- so that output is higher than neg. input terminal by $V_{\text {in }} \times\left(R_{2} / R_{1}\right)$
- $V_{\text {out }}=V_{\text {in }}+V_{\text {in }} \times\left(R_{2} / R_{1}\right)=V_{\text {in }} \times\left(1+R_{2} / R_{1}\right)$
- thus gain is $\left(1+R_{2} / R_{1}\right)$, and is positive

- Current is sourced from op-amp output in this example

REFERENCES

1. Muthusubramanian R, Salivahanan S, "Basic Electrical and Electronics Engineering", Tata McGraw Hill Publishers, (2009) - UNIT I - V
2. Bhattacharya. S.K, "Basic Electrical and Electronics Engineering", Pearson Education , (2017) - UNIT I - IV
3. Mehta V K, Mehta Rohit, "Principles of Electrical Engineering and Electronics", S.Chand \& Company Ltd, (2010)- UNIT I and II
4. Mehta V K, Mehta Rohit, "Principles of Electronics", S.Chand \& Company Ltd, (2005)- UNIT IV and V
