

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME : 19EE101-BASIC ELECTRICAL & ELECTRONICS ENGINEERING

I YEAR /I SEMESTER CSE & CST

Unit 5: Linear and Digital Electronics

Topic : Introduction to Operational Amplifier

GRADUATE ATTRIBUTES

OPERATIONAL AMPLIFIER

- Op-amps (amplifiers/buffers in general) are drawn as a triangle in a circuit schematic
- There are two inputs
 - inverting and non-inverting
- And one output
- Also power connections (note no explicit ground)

divot on pin-1 end

OPERATIONAL AMPLIFIER

- Infinite voltage gain
 - a voltage difference at the two inputs is magnified infinitely
 - in truth, something like 200,000 means difference between + terminal and – terminal is amplified by 200,000!
- Infinite input impedance
 - no current flows into inputs
 - in truth, about $10^{12}\,\Omega$ for FET input op-amps
- Zero output impedance
 - rock-solid independent of load
 - roughly true up to current maximum (usually 5–25 mA)
- Infinitely fast (infinite bandwidth)
 - in truth, limited to few MHz range
 - slew rate limited to 0.5–20 V/ μ s

OPERATIONAL AMPLIFIER WITHOUT FEEDBACK

• The internal op-amp formula is:

 $V_{out} = gain \times (V_+ - V_-)$

- So if $V_{\scriptscriptstyle +}$ is greater than $V_{\scriptscriptstyle -}$, the output goes positive
- If V_{-} is greater than V_{+} , the output goes negative

• A gain of 200,000 makes this device (as illustrated here) practically useless

OPERATIONAL AMPLIFIER WITH NEGATIVE FEEDBACK

- Infinite gain would be useless except in the self-regulated negative feedback regime
 - negative feedback seems bad, and positive good—but in electronics positive feedback means runaway or oscillation, and negative feedback leads to stability
- Imagine hooking the output to the inverting terminal:
- If the output is less than V_{in} , it shoots positive
- If the output is greater than V_{in} , it shoots negative
 - result is that output quickly forces itself to be exactly V_{in}

OPERATIONAL AMPLIFIER

- In the configuration below, if the + input is even a smidge higher than $V_{\rm in}$, the output goes way positive
- This makes the + terminal even *more* positive than V_{in} , making the situation worse
- This system will immediately "rail" at the supply voltage
 - could rail either direction, depending on initial offset

REFERENCES

- Muthusubramanian R, Salivahanan S, "Basic Electrical and Electronics Engineering", Tata McGraw Hill Publishers, (2009) - UNIT I – V
- Bhattacharya. S.K, "Basic Electrical and Electronics Engineering", Pearson Education, (2017) – UNIT I – IV
- Mehta V K, Mehta Rohit, "Principles of Electrical Engineering and Electronics",
 S.Chand & Company Ltd, (2010)- UNIT I and II
- Mehta V K, Mehta Rohit, "Principles of Electronics", S.Chand & Company Ltd, (2005)- UNIT IV and V

THANK YOU

