

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME : 19EE101-BASIC ELECTRICAL & ELECTRONICS ENGINEERING

I YEAR /I SEMESTER CSE & CST

Unit 5: Linear and Digital Electronics

Topic : Half Adder

GRADUATE ATTRIBUTES

INTRODUCTION TO LOGIC GATES

A logic gate is an idealized model of computation or physical electronic device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output.

TYPES OF LOGIC GATE

Six types of gates

•NOT

•AND

•OR

•XOR

•NAND

•NOR

Typically, logic diagrams are black and white with gates distinguished only by their shape

NOT GATE

A NOT gate accepts one input signal (0 or 1) and returns the opposite signal as output

AND GATE

An AND gate accepts two input signals If both are 1, the output is 1; otherwise, the output is 0

OR GATE

An OR gate accepts two input signals If both are 0, the output is 0; otherwise, the output is 1

XOR GATE

An XOR gate accepts two input signals If both are the same, the output is 0; Otherwise, the output is 1

NAND GATE

The NAND gate accepts two input signals If both are 1, the output is

0; otherwise, the output is 1

NOR GATE

The NOR gate accepts two input signals If both are 0, the output is 1; otherwise, the output is 0

SAMPLE COMBINATIONAL CIRCUIT

Consider the following Boolean expression A(B + C)

A	в	С	B + C	A(B + C)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

GATES WITH MORE INPUTS

Gates can be designed to accept three or more input values

A three-input AND gate, for example, produces an output of 1 only if all input values are 1

APPLICATION-HALF ADDER

The result of adding two binary digits could produce a carry value

Recall that 1 + 1 = 10 in base two

Half adder

A circuit that computes the sum of two bits and produces the correct carry bit

Circuit diagram representing a half adder Boolean expressions

sum = $A \oplus B$ carry = AB

REFERENCES

- Muthusubramanian R, Salivahanan S, "Basic Electrical and Electronics Engineering", Tata McGraw Hill Publishers, (2009) - UNIT I – V
- Bhattacharya. S.K, "Basic Electrical and Electronics Engineering", Pearson Education, (2017) – UNIT I – IV
- Mehta V K, Mehta Rohit, "Principles of Electrical Engineering and Electronics",
 S.Chand & Company Ltd, (2010)- UNIT I and II
- Mehta V K, Mehta Rohit, "Principles of Electronics", S.Chand & Company Ltd, (2005)- UNIT IV and V

THANK YOU

