SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107
An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME : 19EE101-BASIC ELECTRICAL \& ELECTRONICS ENGINEERING

I YEAR /I SEMESTER CSE \& CST

Unit 5: Linear and Digital Electronics

Topic: Half Adder

GRADUATE ATTRIBUTES

INTRODUCTION TO LOGIC GATES

A logic gate is an idealized model of computation or physical electronic device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output.

TYPES OF LOGIC GATE

Six types of gates
-NOT
-AND
-OR
-XOR
-NAND
-NOR
Typically, logic diagrams are black and white with gates distinguished only by their shape

NOT GATE

A NOT gate accepts one input signal (0 or 1) and returns the opposite signal as output

Truth Table

\mathbf{A}	\mathbf{X}
0	1
1	0

AND GATE

An AND gate accepts two input signals If both are 1, the output is 1 ; otherwise, the output is 0

Boolean Expression$X=A \cdot B$	Logic Diagram Symbol		h	
		A	B	X
		0	0	0
		0	1	0
		1	0	0
		1	1	1

OR GATE

An OR gate accepts two input signals If both are 0 , the output is 0 ; otherwise, the output is 1

XOR GATE

An XOR gate accepts two input signals If both are the same, the output is 0 ; Otherwise, the output is 1

| Boolean Expression | Logic Diagram Symbol | |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{X}=\mathrm{A} \oplus \mathrm{B}$ | B | \mathbf{A} \mathbf{B} \mathbf{X}
 0 0 0
 0 1 1
 1 0 1
 1 1 0 |

NAND GATE

The NAND gate accepts two input signals If both are 1, the output is 0 ; otherwise,the output is 1

Boolean Expression$X=(A \cdot B)^{\prime}$	Logic Diagram Symbol	Truth Table		
	\mathbf{A}	A	B	X
	0	0	0	1
	B	0	1	1
		1	0	1
		1	1	0

,

NOR GATE

The NOR gate accepts two input signals If both are 0 , the output is 1 ; otherwise, the output is 0

SAMPLE COMBINATIONAL CIRCUIT

Consider the following Boolean expression $A(B+C)$

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{B}+\mathbf{C}$	$\mathbf{A}(\mathbf{B}+\mathbf{C})$
$\mathbf{0}$	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

GATES WITH MORE INPUTS

Gates can be designed to accept three or more input values A three-input AND gate, for example, produces an output of 1 only if all input values are 1

Boolean Expression	Logic Diagram Symbol\mathbf{A}	Truth Table			
$X=A \cdot B \cdot C$		A	B	C	X
		0	0	0	0
	C	0	0	1	0
		0	1	0	0
		0	1	1	0
		1	0	0	0
		1	0	1	0
		1	1	0	0
		1	1	1	1

,

APPLICATION-HALF ADDER

The result of adding two binary digits could produce a carry value
Recall that $1+1=10$ in base two

Half adder
A circuit that computes the sum of two bits and produces the correct carry bit

Circuit diagram representing a half adder
Boolean expressions

$$
\begin{aligned}
& \text { sum }=A \oplus B \\
& \text { carry }=A B
\end{aligned}
$$

A	B	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

I

REFERENCES

1. Muthusubramanian R, Salivahanan S, "Basic Electrical and Electronics Engineering", Tata McGraw Hill Publishers, (2009) - UNIT I - V
2. Bhattacharya. S.K, "Basic Electrical and Electronics Engineering", Pearson Education , (2017) - UNIT I - IV
3. Mehta V K, Mehta Rohit, "Principles of Electrical Engineering and Electronics", S.Chand \& Company Ltd, (2010)- UNIT I and II
4. Mehta V K, Mehta Rohit, "Principles of Electronics", S.Chand \& Company Ltd, (2005)- UNIT IV and V
