SNS College of Engineering Coimbatore - 641107

Multiplication of large integers and strassen matrix

Multiplication of large integer: ste

$>$ Over 100 Decimal digits long required manipulation of Integers
$>$ Such Integers are too long to fit in single word of modern computers, they required special treatment
>So, we are using classic method Pen and Pencil algorithm for multiplying to n-digit integers
$>$ n-digit $-1^{\text {st }}$ number $* n$-digit-2 ${ }^{\text {nd }}$ number $=n^{2}$ digit multiplication

Formula

- Pair of 2 digit integers
a $=$ al a0
b=b1 b0
Their product is c .

$$
\begin{aligned}
& c=a * b=c 210^{2}+c 110^{1}+c 0, \text { where } \\
& c 2=a 1 * b 1->\text { Product of } 1^{\text {st }} \text { digit } \\
& c 0=a 0 * b 0->\text { Product of } 2^{\text {nd }} \text { digit } \\
& c 1=(a 1+a 0) *(b 1+b 0)-(c 2+c 0)->\text { product of sum } \\
& \text { of } a^{\prime} s \text { digit and sum of b's digit minus sum of } c 2 \text { and } c 0
\end{aligned}
$$

Formula

> Apply Divide and Conquer technique
> First half of a's digit is al and second half by a0. Same as this for b, b1 and b0
> Using $\mathrm{c}=\mathrm{a} * \mathrm{~b}=\mathrm{C} 210^{2}+\mathrm{c} 110^{1}+\mathrm{c} 0$ this formula,

$$
c=a * b=\left(a 110^{n / 2}+a 0\right) *\left(b 110^{n / 2}+b 0\right)
$$

$$
\Rightarrow(\mathrm{a} 1 * \mathrm{~b} 1) 10^{\mathrm{n}}+\left(\mathrm{a} 1 * \mathrm{~b} 0+\mathrm{a} 1^{*} \mathrm{~b} 1\right) 10^{\mathrm{n} / 2}+(\mathrm{a} 0 * \mathrm{~b} 0)
$$

$\Rightarrow \mathrm{C} 210^{2}+\mathrm{C} 110^{1}+\mathrm{CO}$

蓝rak Event: Can you find the ani snE in the image

Analysis of M ultiplication of large Integers
 $$
>T(n)=3 T(n / 2)
$$

Therefore, time complexity for all the cases, $3 \log _{2} n$

c_{00}	c_{01}			
c_{10}	c_{11}	$=$	a_{00}	a_{01}
:---	:---	:---	:---	
a_{10}	a_{11}	$\quad b_{00} \quad b_{01}$		

$$
=\begin{array}{cc}
m_{1}+m_{4}-m_{5}+m_{7} & m_{3}+m_{5} \\
m_{2}+m_{4} & m_{1}+m_{3}-m_{2}+m_{6}
\end{array}
$$

$$
\begin{aligned}
& m_{1}=\left(a_{00}+a_{11}\right) *\left(b_{00}+b_{11}\right) \\
& m_{2}=\left(a_{10}+a_{11}\right) * b_{00} \\
& m_{3}=a_{00} *\left(b_{01}-b_{11}\right) \\
& m_{4}=a_{11} *\left(b_{10}-b_{00}\right) \\
& m_{5}=\left(a_{00}+a_{00}\right) * b_{11} \\
& m_{6}=\left(a_{10}-a_{00}\right) *\left(b_{00}+b_{01}\right) \\
& m_{7}=\left(a_{01}-a_{11}\right) *\left(b_{10}+b_{11}\right)
\end{aligned}
$$

