oreo reduction is 2.5. Materials for pinion and wheel are © 15 steel) and cast iron grade 30 respectively. Take pressure angle of 20° and working life of the gears as 10000 hrs.

Given Data): $\mathrm{P}=22.5 \mathrm{~kW} ; \mathrm{N}_{1}=900 \mathrm{r} . \mathrm{p} . \mathrm{m} . ;\left(\mathrm{i}=2.5 ; \phi=20^{\circ} ; \mathrm{N}=10000 \mathrm{hrs} . \quad 16 \mathrm{mork}\right.$
To find. Design a spur gear.

* Pinion \rightarrow C 15 steel
() Solution : Since the materials for pinion and wheel are different, therefore we have to design the pinion first and check both pinion and wheel.
(1.) Gear ratio: (i) $=2.5$

$$
\begin{equation*}
i=\frac{N_{1}}{N_{2}}=\frac{Z_{e}}{Z_{1}} \tag{Given}
\end{equation*}
$$

2. Material selection :

Pinion: C15 steel, case hardened to 55 RC and core hardness <350, and
Wheel: C.I. grade 30 .
(3.) Gear life: $\quad \mathrm{N}=10000 \mathrm{hrs}$

Gear life in terms of number of cycles is given by

$$
\mathrm{N}=10000 \times 60 \times 900=54 \times 10^{7} \text { cycles }
$$

(4.) Design torque $\left[M_{t}\right]$:

$$
M_{t}=\frac{60 \times P}{2 \pi N_{1}}=\frac{60 \times 22.5 \times 10^{3}}{2 \pi \times 900}=238.73 \mathrm{~N}-\mathrm{m}, \text { and }
$$

$$
\left.\mathrm{K} \cdot \mathrm{~K}_{d}=1.3{\underset{8.15}{P G G_{1}} \quad M_{t}=\left[M_{t \times K} k K d\right]}_{8}^{P_{8}}\right]
$$

$\therefore \quad$ Design torque, $\left[\mathrm{M}_{t}\right]=238.73 \times 1.3=310.35 \mathrm{~N}-\mathrm{m} \rightarrow \mathrm{M}_{t}$
5. Calculation of $E_{\text {eq }},\left[\sigma_{b} /\right.$ and $\left./ \sigma_{i}\right]$:
(i) To find $\left.E_{\text {eq }}\right)$: From Table 5.20, for pinion steel and cast iron $(>280 \mathrm{~N} / \mathrm{mrr}$ equivalent Young's modulus, $\left.E_{e q}\right)=1.7 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} . q_{0}{ }^{*}$
(ii) To find $\left[\sigma_{b}\right]$: The design bending stress $\left[\sigma_{b}\right]$ is given by

$$
\stackrel{B .18}{\sim} \quad\left[\sigma_{b}\right]=\frac{1.4 \times \mathrm{K}_{b 1}}{\left(1 \pi \cdot \mathrm{~K}_{\sigma}\right)} \times \sigma_{-1} \text {, assuming rotation in one direction only. }
$$

pea 820 \checkmark From Table 5.14, for steel $(\mathrm{HB} \leq 350)$ and $\mathrm{N} \geq 10^{7}, \mathrm{~K}_{b}{ }^{\text {Life }}=1$.
8.19 \checkmark From Table 5.17, for steel case hardened, factor of safety $(n)=2$.
8.19 From Table 5.15, for steel case hardened, stress concentration factor,$\widehat{K}_{\sigma}=1.2$.
8.19 \checkmark From Table 5.16, for forged steel, $\left.\sigma_{-1}\right)=0.25\left(\sigma_{u}+\sigma_{y}\right)+50$. Stress
But from Table 5.3, for $\left.\mathrm{C}_{15} 15, \sigma_{u}\right)=490 \mathrm{~N} / \mathrm{mm}^{2}$ and $\sigma_{y}=240 \mathrm{~N} / \mathrm{mm}^{2}$. Papa 5.11
$\therefore \quad \sigma_{-1}=0.25(490+240)+50=232.5 \mathrm{~N} / \mathrm{mm}^{2}$
Then,

$$
\left[\sigma_{b}\right]=\frac{1.4 \times 1}{2 \times 1.2} \times 232.5=135.625 \mathrm{~N} / \mathrm{mm}^{2}
$$

(iii) To find $/ \sigma_{c} /$: The design contact stress $\left[\sigma_{c}\right]$ is given by

$$
\text { 8.16 }\left[\sigma_{c}\right]=\mathrm{C}_{\mathrm{R}} \cdot \mathrm{HRC} \cdot \mathrm{~K}_{c l} \text { Pinion }
$$

where

$$
3^{16}\left(\mathbb{C}_{R}\right)=22, \text { for } C 15 \text { case hardened steel, from Table 5.18, }
$$

$$
\begin{aligned}
\mathrm{BRO}^{6} & =55 \text { to } 63 \text {, for } \mathrm{C} 15 \text { steel, from Table } 5.18 \text {, and } \\
8 . \mathrm{K}_{c i} & =0.585, \text { for } \mathrm{HB}>350, \mathrm{~N} \geq 25 \times 10^{7} \text {, from Table 5.19. }
\end{aligned}
$$

$$
\therefore \quad\left[\sigma_{c}\right]=22 \times 63 \times 0.585=810.81 \mathrm{~N} / \mathrm{mm}^{2}
$$

6. Calculation of centre distance (a) :

Bsa 8.13
We know that,

\ldots (assumed initially
where porn $8.14 \quad \psi=\frac{b}{a}=0.3$

$$
\begin{aligned}
\therefore \quad a & \geq(2.5+1) \sqrt[3]{\left(\frac{0.74}{810.81}\right)^{2} \times \frac{1.7 \times 10^{5} \times 310.35 \times 10^{3}}{2.5 \times 0.3}} \\
a & \geq 135.94 \mathrm{~mm} \text { or }(a)=136 \mathrm{~mm} . \\
a & =136
\end{aligned}
$$

7. To find z_{1} and z_{2} :
(i) For 20° full depth system, select $\left(z_{1}\right)=18$
(ii) $z_{2}=i \times z_{1}=2.5 \times 18=45 \rightarrow$ (20)
8. Calculation of module) (m) : 8.ee

We know that, ${ }^{B \cdot e}(m)=\frac{2 a}{z_{1}+z_{2}}=\frac{2 \times 136}{18+45}=4.32 \mathrm{~mm}$
From Table 5.8, the nearest higher standard module, $m=5 \mathrm{~mm}$
9. Revision of centre distance :

PSG
8.22

New centre distance, $\left.a=\frac{m\left(z_{1}+z_{2}\right)}{2}\right)=\frac{5(18+45)}{2}=157.5 \mathrm{~mm}$
10. Calculation of b, d_{1}, v and ψ_{p} :
\checkmark Face width $((b): b=\psi \cdot a=0.3 \times 157.5=47.25 \mathrm{~mm}$.
\checkmark Pitch diameter of pinion $\left(d_{1}\right): d_{1}=m \cdot z_{1}=5 \times 18=90 \mathrm{~mm}$.

$$
\text { (v) } v=\frac{\pi d_{1} \mathrm{~N}_{1}}{60}=\frac{\pi \times 90 \times 10^{-3} \times 900}{60}=4.24 \mathrm{~m} / \mathrm{s} \rightarrow \text { (v) }
$$

8

$$
\Psi_{p}=\frac{b}{d_{1}}=\frac{47.25}{90}=0.525 .
$$

11. Selection of quality of gear :

From Table 5.22 , for $v=4.24 \mathrm{~m} / \mathrm{s}$, IS quality 8 gears are selected. 5.62
12. Revision of design torque $\left[M_{t}\right]$:
\checkmark Revise K : From Table 5.11, for $\psi_{p}=0.525, \mathrm{~K} \approx 1.03$.
\checkmark Revise $\boldsymbol{K}_{\boldsymbol{d}}$: From Table 5.12, for IS quality 8 and $v=4.24 \mathrm{~m} / \mathrm{s}, \mathrm{K}_{\boldsymbol{d}}=1.4$.
\checkmark Revise [M_{t} J :

$$
\begin{aligned}
{\left[\mathrm{M}_{t}\right] } & =\mathrm{M}_{t} \cdot \mathrm{~K} \cdot \mathrm{~K}_{d} \\
& =238.73 \times 1.03 \times 1.4=344.24 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

13. Check for bending :

\checkmark Calculation of induced bending stress, σ_{b} : psq

$$
\text { * } \quad 8^{13} \quad \sigma_{b}=\frac{(i+1)}{a \cdot m \cdot b \cdot y}\left[\mathrm{M}_{t}\right] \quad 8.13 \mathrm{~A}
$$

where $\quad 8.18 y=$ Form factor $=0.377$, for $z_{1}=18$, from Table 5.13.
$\therefore \quad \sigma_{b}=\frac{(2.5+1) \times 344.24 \times 10^{3}}{157.5 \times 5 \times 47.25 \times 0.377}=85.89 \mathrm{~N} / \mathrm{mm}^{2}$
\checkmark We find $\sigma_{b}<\left[\sigma_{\mathrm{B}}\right]$. Therefore the design is satisfactory.

fish

8.13
\checkmark Calculation of induced contact stress, σ_{c} :

$$
\begin{aligned}
\sigma_{c} & \left.=0.74 \frac{i+1}{a} \sqrt{\frac{i+1}{i b} \times \mathrm{E}_{e q}\left[\mathrm{M}_{t}\right]}\right) \\
& =0.74\left(\frac{2.5+1}{157.5}\right) \sqrt{\left(\frac{2.5+1}{2.5 \times 47.25}\right) \times 1.7 \times 10^{5} \times 344.24 \times 10^{3}} \\
& =684.76 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

\checkmark We find $\sigma_{c}<\left\lfloor\sigma_{c} \mid\right.$. Therefore the design is safe and satisfactory.
(15.) Check for wheel:
(ii) Calculation of $\left[\sigma_{b} /_{\text {whed }}\right.$ and $/ \sigma_{c} \|_{\text {whed }}$:

Wheel material: CI grade 30 .
Wheel speed :

$$
\mathrm{N}_{2}=\frac{\mathrm{N}_{1}}{i}=\frac{900}{2.5}=360 \text { r.p.m. }
$$

$\therefore \quad$ Life of wheel $=10000 \mathrm{hrs}=10,000 \times 60 \times 360=21.6 \times 10^{7}$ cycles
To find $/ \sigma_{b} /_{\text {wheed }}$: The design bending stress for wheel is given by 8. ${ }^{8}\left[\sigma_{b}\right]_{\text {wheel }}=\frac{1.4 \times K_{b l}}{n \cdot K_{\sigma}} \times \sigma_{-1}$, assuming rotation in one direction only.
$8.20 \checkmark$ From Table 5.14, for cast iron wheel, $K_{b 6}=\sqrt[9]{\frac{10^{7}}{N}}=\sqrt[9]{\frac{10^{7}}{21.6 \times 10^{7}}}=0.918$
8. $14\left\{\begin{array}{l}\checkmark \text { From Table 5.17, for cast iron, }(7)=2 . \\ \checkmark \quad \text { From Table 5.15, for cast iron, }\left(K_{\sigma}\right)=1.2 .\end{array}\right.$
\checkmark From Table 5.16, for cast iron, $\sigma_{-1}=0.45 \sigma_{u}$.
But from Table 5.3 , for cast iron, $\sigma_{u}=290 \mathrm{~N} / \mathrm{mm}^{2}$.
8.19. $C_{1}=\sigma_{-1}=0.45+\sigma_{u} \sigma_{-1}=0.45 \times 290=130.5 \mathrm{~N} / \mathrm{mm}^{2}$

Then,

$$
\left[\sigma_{b}\right]_{\text {wheel }}=\frac{1.4 \times 0.918}{2 \times 1.2} \times 130.5=69.88 \mathrm{~N} / \mathrm{mm}^{2}
$$

To find $/ \sigma_{c} I_{\text {wheel }}$: The design contact stress for wheel is given by

$$
8^{16} \quad\left[\sigma_{c}\right]_{\text {wheel }}=C_{B} \cdot \mathrm{HB} \cdot \mathrm{~K}_{c l}
$$

where ${ }_{8 . \infty}\left(C_{B}=2.3\right.$, for cast iron grade 30 , from Table 5.18 , 8. $16 \mathrm{HB}=200$ to 260 , for cast iron, from Table 5.18 , and
$\widehat{K}_{\text {c }}=\sqrt[6]{\frac{10^{7}}{\mathrm{~N}}}=\sqrt[6]{\frac{10^{7}}{21.6 \times 10^{7}}}=0.879$, for cast iron, from Table 5.1^{9}
$\therefore\left[\sigma_{c}\right]_{\text {wheel }}=2.3 \times 260 \times 0.879=525.64 \mathrm{~N} / \mathrm{mm}^{2}$
(ii) Check for bending:
\checkmark Calculation of induced bending stress for wheel $\sigma_{b 2}$:

$$
\sigma_{b 1} \times y_{1}=\sigma_{b 2} \times y_{2}
$$

where $\quad \sigma_{b 1}$ and $\sigma_{b 2}=$ Induced bending stresses in the pinion and wheel respectively, and
y_{1} and $y_{2}=$ Form factors for pinion and wheel respectively.
From Table 5.13, $\quad y_{2}=0.471$, for $z_{2}=45$.

$$
\begin{aligned}
& & \sigma_{b 1} & =85.89 \mathrm{~N} / \mathrm{mm}^{2} \text { and } y_{1}=0.377 \quad \ldots \text { (already calculated) } \\
\therefore & 85.89 \times 0.377 & =\sigma_{b 2} \times 0.471 & \sigma_{b 2}=\frac{\sigma_{b 1} y_{1}}{y_{2}}
\end{aligned}
$$

We find $\sigma_{b 2}<\left[\sigma_{b}\right]_{\text {wheel }}$. Therefore the design is satisfactory.
(iii) Check for wear strength : Since contact area is same, therefore $\sigma_{c \text { wheel }}=\sigma_{c \text { pinion }}$ $=684.76 \mathrm{~N} / \mathrm{mm}^{2}$. Here $\sigma_{c \text { wheel }}>\left[\sigma_{c}\right]_{\text {wheel }}$. It means, wheel does not have the required wear resistance. So, in order to decrease the induced contact stress, increase the face width (b) value or in order to increase the design contact stress, increase the surface hardness, say to 340 HB . Increasing the surface hardness will give $\left[\sigma_{c}\right]=2.3 \times 340 \times 0.879=687.34$ $\mathrm{N} / \mathrm{mm}^{2}$. Now we find $\sigma_{c}<\left[\sigma_{c}\right]$. So the design is safe and satisfactory.
(16.) Calculation of basic dimensions of pinion and wheel : Refer Table 5.10.
\checkmark Module: $m=\mathbf{5 m m}$
${ }_{539}$ b \checkmark Face width : $(b)=\mathbf{4 7 . 2 5} \mathbf{~ m m}$
\checkmark Height factor : $f_{0}=\mathbf{1}$ for full depth teeth. 822
\checkmark Bottom clearance : $(c)=0.25 \mathrm{~m})=0.25 \times 5=\mathbf{1 . 2 5} \mathbf{~ m m}$.
\checkmark Tooth depth : $\left(h=2.25 \mathrm{~m}{ }^{8}{ }^{22} 2.25 \times 5=11.25 \mathrm{~mm}\right.$.
\checkmark Pitch circle diameter: $d_{1}=m \cdot z_{1}=5 \times 18=\mathbf{9 0} \mathbf{~ m m}$; and

$$
\text { er: } \quad d_{1}^{22}=m \cdot z_{1}=5 \times 18=90 \mathrm{lmm}, .
$$

\checkmark Tip diameter:

$$
822\left(\begin{array}{l}
d_{a 1}\left(z_{2}+2 f_{0}\right) m=(45+2 \times 1) 5=\mathbf{2 3 5} \mathbf{~ m m} \\
d_{a 2}=2 m-2 c
\end{array}\right.
$$

Root diameter :
di

$$
\begin{aligned}
d_{f 1} & =\left(z_{1}-2 f_{0}\right) m-2 c \\
& =(18-2 \times 1) 5-2 \times 1.25=77.5 \mathbf{m m} ; \text { and } \\
d_{f 2} & =\left(z_{2}-2 f_{0}\right) m-2 c 8822 \\
& =(45-2 \times 1) 5-2 \times 1.25=\mathbf{2 1 2 . 5} \mathbf{~ m m}
\end{aligned}
$$

Example (5.20) It is desired to determine the proportions of a spur gear drive to transmit 8 kW from a shaft rotating at 1200 r.p.m. to a low speed shaft, with a reduction of 3:1. Assume that the teeth are 20° full depth involute, with (24 teeth on the pinion. The pinion is to be of 40 C 8 normalized steel and gear of 30 C 8 normalized steel. Assume that the starting torque is 130% of the rated torque.
Given Data: $\mathrm{P}=8 \mathrm{~kW}$.

$$
\text { (i) }=3 ; \text { (} \phi=20^{\circ} ; Z_{1}=24 \text {; }
$$

Starting torque $=1.3 \times$ rated torque.
To find. Design a spur gear.

Solution :

(1.) Gear ratio : i=3
... (Given)
(2.) Material selection: Pinion $=40$ C 8 normalized steel ; and

$$
\begin{equation*}
\text { Gear }=30 \text { C } 8 \text { normalized steel. } \tag{Given}
\end{equation*}
$$

(3.) Gear life : Assume 20,000 hours.
(N) $=20000 \times 60 \times 1200=144 \times 10^{7}$ cycles
(4.) Design torque $\left[M_{t}\right]$:

$$
\begin{aligned}
& =144 \times 10^{7} \text { cycles } \\
& \left.\left[\mathrm{M}_{t}\right]=\mathrm{M}_{t} \times \mathrm{K} \times \mathrm{K}_{d}\right)^{8.15}
\end{aligned}
$$

where

$$
\begin{align*}
& \mathrm{M}_{t}=\frac{60 \times \mathrm{P}}{2 \pi \mathrm{~N}_{1}}=\frac{60 \times 8 \times 10^{3}}{2 \pi \times 1200}=63.66 \mathrm{~N}-\mathrm{m}, \text { and } \\
& \mathrm{K} \cdot \mathrm{~K}_{d}=1.38 .15 \tag{Assume}\\
& {\left[\mathrm{M}_{t}\right]=63.66 \times 1.3=82.76 \mathrm{~N}-\mathrm{m}}
\end{align*}
$$

(5.) Calculation of $\left.E_{e q}\right) /\left(\sigma_{b}\right)$ and $/\left(\sigma_{c}\right)$:
(i) To find $E_{e q}$): From Table $5.20, \mathrm{E}_{\text {eq }}=2.15 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ for steel. 8. A
(ii) To find $\left[\sigma_{b}\right\rceil$: Design bending stress, $\left[\mathrm{M}_{t}\right]=\frac{1.4 \times \mathrm{K}_{b l}}{n \cdot \mathrm{~K}_{\sigma}} \times \sigma_{-1}{ }^{8.18}$
$8.20 \quad \mathrm{~K}_{6 .}=1$, for steel $\mathrm{HB} \leq 350$ and $\mathrm{N} \geq 10^{7}$, from Table 5.14,
g. $19 \checkmark n=2$, for, steel normalized, from Table 5.17 .
$\checkmark K_{\sigma}=1.5$, for steel normalized, from Table 5.15 ,
Q $19 \checkmark \sigma_{-1}=0.35 \sigma_{N}+120$ for alloy steel, from Table 5.16

$$
=0.35 \times 720+120=372 \mathrm{~N} / \mathrm{mm}^{2}
$$

$\sigma_{b}=\quad \therefore \frac{14 \times K b \mid}{n K_{\sigma}} \quad\left[\sigma_{b}\right]=\frac{1.4 \times 1}{2 \times 1.5} \times 372=173.6 \mathrm{~N} / \mathrm{mm}^{2}$
(iii) To find $\left|\sigma_{c}\right|$ Design contact stress, $\left|\sigma_{c}\right|=C_{B} \times \mathrm{HB} \times \mathrm{K}_{\mathrm{C}}$
where
$C_{B}=2.5$, for alloy steel normalized, from Table 5.18.
HB) ≤ 350, from Table 5.18 , and
$K_{d}=1$, for steel, $\mathrm{HB} \leq 350$ and $\mathrm{N} \geq 10^{7}$, from Table 5.19.
$\left[\sigma_{c}\right]=2.5 \times 300 \times 1=750 \mathrm{~N} / \mathrm{mm}^{2}$
(6.) Centre distance (a) : Assume $(\psi)=0.3$.

$$
\begin{aligned}
8.13(a & \left.\geq(i+1) \sqrt[3]{\left(\frac{0.74}{\left[\sigma_{c}\right]}\right)^{2} \times \frac{E_{e q}\left|\mathrm{M}_{i}\right|}{i \psi}}\right) \\
& \geq(3+1) \sqrt[3]{\left(\frac{0.74}{750}\right)^{2} \times \frac{2.15 \times 10^{3} \times 82.76 \times 10^{1}}{3 \times 0.3}} \\
& \geq 107.2 \text { or }(a)=110 \mathrm{~mm}
\end{aligned}
$$

(7.) Given that $\left(z_{1}=24, \quad \therefore\left(z_{2}=i z_{1}=3 \times 24=72\right.\right.$.
(8.) Module $(m):\left(m=\frac{2 a}{z_{1}+z_{2}}\right)=\frac{2 \times 110}{24+72}=2.29 \mathrm{~mm}$

From Table 5.8, the nearest higher standard module, (mi) -2.5 mm .
(9.) Revised centre distance $:\left(a=\frac{m\left(z_{1}+z_{2}\right)}{2}\right)=\frac{2.5(24+72)}{2}=120 \mathrm{~mm}$.
(10.) Calculation of $(b)(d)(p)$ ind $\left(\psi_{p}\right)$
\checkmark Face width $(b):(b-\psi \times a)=0.3 \times 120=36 \mathrm{~mm}$
\checkmark Pitch diameter of pinion $\left(d_{1}\right):\left(d_{1}=m \cdot a_{1}\right)=2.5 \times 24=60 \mathrm{~mm}$.
\checkmark Pitch line velocity $(v)\left(v=\frac{\pi d_{1} N_{1}}{60}\right)^{n \prime \prime}=\frac{\pi \times 60 \times 10^{-1} \times 1200}{60}=3.77 \mathrm{~m} / \mathrm{s}$ $\checkmark\left(\psi_{p}=\frac{b}{d_{1}}\right)^{3}=\frac{36}{60}=0.6$
(11.) Quality of gear: From Table 5.22 , for $v-3.7 \% \mathrm{~m} / \mathrm{s}$, IS quality 8 gears are velenter

Revised design torque $\left|M_{t}\right|$:

From Table 5.11, for 4 (4) $=0.6$, (K) $=1.03$.
From Table 5.12, for IS quality $8, \mathrm{HB} \leq 350$ and $v=3.77 \mathrm{~m} / \mathrm{s}, \mathrm{K}_{d}=1.55$.
$\left.\therefore \quad\left[\mathrm{M}_{t}\right]=\mathrm{M}_{t} \cdot \mathrm{~K} \cdot \mathrm{~K}_{d}\right)^{8.15}$

$$
=63.66 \times 1.03 \times 1.55=101.63 \mathrm{~N}-\mathrm{m}
$$

(13.) Check for bending :

Induced bending stress, $\sigma_{b}=\frac{i+1}{a \cdot m \cdot b \cdot y}\left[M_{1}\right]$
where

$$
y=0.414 \text {, for }\left(z_{1}\right)=24, \text { from Table 5.13. }
$$

$$
\therefore \quad \sigma_{b}=\frac{(3+1)}{120 \times 2.5 \times 36 \times 0.414} \times 101.63 \times 10^{3}=90.9 \mathrm{~N} / \mathrm{mm}^{2}
$$

We find $\sigma_{b}<\left[\sigma_{b}\right]$. Thus the design is satisfactory.
(14.) Check for wear strength: Induced contact stress is given by

$$
\begin{aligned}
\sigma_{c} & =0.74 \frac{i+1}{a} \sqrt{\frac{i+1}{i b} \times \mathrm{E}_{e q}\left[\mathrm{M}_{t}\right]} \\
& =0.74\left(\frac{3+1}{120}\right) \sqrt{\left(\frac{3+1}{3 \times 36}\right) \times 2.15 \times 10^{5} \times 101.63 \times 10^{3}} \\
& =701.71 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

We find $\sigma_{c}<\left[\sigma_{c}\right]$, thus the design is safe and satisfactory.
(15.) Check for plastic deformation:

$$
\left.M_{t}\right)=\text { Rated torque }=63.66 \mathrm{~N}-\mathrm{m}
$$

... (already calculated)
Given that starting torque is 130% of rated torque.
$\therefore \quad\left[\mathrm{M}_{t}\right]_{\text {max }}=$ Maximum instantaneous torque $=1.3 \times \mathrm{M}_{t}$

$$
=1.3 \times 63.66=82.758 \mathrm{~N}-\mathrm{m}
$$

(i) Check for bending: Induced bending stress due to maximum instantaneous torque is given by

$$
\sigma_{b \max }=\sigma_{b} \frac{\left[\mathrm{M}_{t}\right]_{\max }}{\mathrm{M}_{t}}=90.9 \times \frac{82.758}{63.66}=118.17 \mathrm{~N} / \mathrm{mm}^{2} \quad\left[\because \sigma_{b}=90.9 \mathrm{~N} / \mathrm{mm}^{2}\right]
$$

From Table 5.23, for steel $\mathrm{HB} \leq 350$, permissible bending stress is given by

$$
\left[\sigma_{b}\right]_{\max }=0.8 \sigma_{y}=0.8 \times 540=432 \mathrm{~N} / \mathrm{mm}^{2}
$$

Since $\quad \sigma_{b \text { max }}<\left[\sigma_{b}\right]_{\text {max }}$, the design is satisfactory. $\quad\left[\because \sigma_{y}=540 \mathrm{~N} / \mathrm{mm}^{2}\right]$
(ii) Check for wear strength : Induced contact stress due to maximum instantaneous torque is given by

$$
\begin{aligned}
\bar{\sigma}_{c \text { max }} & \left.=\sigma_{c} \times \frac{\left(\mathrm{M}_{t}\right]_{\max }}{\mathrm{M}_{t}}\right)^{B \cdot 2} \\
& =701.71 \times \frac{82.758}{63.66}=912.22 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned} \quad\left[\because \sigma_{c}=701.71 \mathrm{~N} / \mathrm{mm}^{2}\right]
$$

From Table 5.24 , for steel $\mathrm{HB} \leq 350$, permissible contact stress is given by

$$
\left[\sigma_{c}\right]_{\max }=3.1 \sigma_{y}=3.1 \times 540=1674 \mathrm{~N} / \mathrm{mm}^{2}
$$

Since $\sigma_{c \max }<\left[\sigma_{c}\right]_{\max }$, the design is safe and satisfactory against plastic deformation also.
(16.) Basic dimensions of pinion and gear : Refer Table 5.10.

Module : $m=\mathbf{2 . 5} \mathrm{mm}$
\checkmark Face width : (b) $=\mathbf{3 6} \mathbf{~ m m}$
\checkmark Height factor : $f_{0}=\mathbf{1}$
\checkmark Bottom clearance : (c) $=0.25 \mathrm{~m}=0.25 \times 2.5=\mathbf{0 . 6 2 5} \mathbf{~ m m}$
\checkmark Tooth depth : $(h)=2.25 \mathrm{~m}=2.25 \times 2.5=\mathbf{5 . 6 2 5} \mathbf{~ m m}$
\checkmark Pitch circle diameter: $\left(d_{1}=m \cdot z_{1}=2.5 \times 24=\mathbf{6 0 ~ m m}\right.$; and
\checkmark Tip diameter :
$\left(d_{a 1}\right)=\left(z_{1}+2 f_{0}\right) m=(24+2 \times 1) 2.5=\mathbf{6 5 ~ m m}$; and 8.22
\checkmark Root diameter :

$$
\left(d_{2}\right)=m \cdot z_{2}=2.5 \times 72=\mathbf{1 8 0} \mathbf{m m}
$$

