to c max to c max when the design is sale and satisfactory.

Example 5.20 It is desired to determine the proportions of a spur gear drive to transmit 8 kW from a shaft rotating at 1200 r.p.m. to a low speed shaft, with a reduction of 3: 1. Assume that the teeth are 20° full depth involute, with 24 teeth on the pinion. The pinion is to be of 40 C 8 normalized steel and gear of 30 C 8 normalized steel. Assume that the starting torque is 130% of the rated torque. $P = 8 \text{ kW}; (N_1) = 1200 \text{ r.p.m.}$ $(i) = 3; (i) = 20^\circ; (z_1) = 24;$ Given Data :) Starting torque = $1.3 \times$ rated torque. (To find ;) Design a spur gear. Solution : **1.)** Gear ratio : i = 3 ... (Given) 2. Material selection : Pinion = 40 C 8 normalized steel; and Gear = 30 C 8 normalized steel. ... (Given) 3.) Gear life: Assume 20,000 hours. \therefore N = 20000 × 60 × 1200 = 144 × 107 cycles 4. Design torque [M_t]: [M_t] = $M_t \times K \times K_d$ 8. 15 $M_t = \frac{60 \times P}{2\pi N_1} = \frac{60 \times 8 \times 10^3}{2\pi \times 1200} = 63.66$ N-m, and where $K \cdot K_d = 1.3$ 8.15 ... (Assume) $[M_{\star}] = 63.66 \times 1.3 = 82.76 \text{ N-m}$ 5. Calculation of E_{eq} , [σ_b] and [σ_c]: (i) To find E_{eq} : From Table 5.20, $E_{eq} = 2.15 \times 10^5 \text{ N/mm}^2$ for steel. Design bending stress, $[M_t] = \frac{1.4 \times K_{bl}}{n \cdot K_{-1}} \times \sigma_{-1}$ (ii) To find [σ_b] :

System 5.74 \checkmark K_{bl} = 1, for steel HB \leq 350 and N \geq 107, from Table 5.14, n = 2, for steel normalized, from Table 5.17, $K_{\sigma} = 1.5$, for steel normalized, from Table 5.15, $\checkmark \sigma_{-1} = 0.35 \sigma_{\mu} + 120$, for alloy steel, from Table 5.16 $\cdots [:: \sigma_{\mu} = 720 \frac{N}{M_{m_{\eta}}}$ $= 0.35 \times 720 + 120 = 372 \text{ N/mm}^2.$ $[\sigma_b] = \frac{1.4 \times 1}{2 \times 1.5} \times 372 = 173.6 \text{ N/mm}^2$.`. (iii) To find [σ_c]: Design contact stress, [σ_c] = C_B × HB × K_{cl} $C_{\rm B} = 2.5$, for alloy steel normalized, from Table 5.18. where HB \leq 350, from Table 5.18, and $K_{cl} = 1$, for steel, HB ≤ 350 and N $\geq 10^7$, from Table 5.19. $[\sigma_c] = 2.5 \times 300 \times 1 = 750 \text{ N/mm}^2$.'. **6.** Centre distance (a) : Assume $\psi = 0.3$. $\int e_{519^{n}} B^{1/3} \qquad a \ge (i+1) \sqrt[3]{\left(\frac{0.74}{[\sigma_c]}\right)^2 \times \frac{E_{eq}[M_i]}{i \psi}}$ $\geq (3+1) \sqrt[3]{\left(\frac{0.74}{750}\right)^2} \times \frac{2.15 \times 10^5 \times 82.76 \times 10^3}{3 \times 0.3}$ \geq 107.2 or a = 110 mm (7.) Given that $z_1 = 24$. $\therefore (z_2 = i z_1) = 3 \times 24 = 72$. 8. Module (m): $m = \frac{2a}{z_1 + z_2} = \frac{2 \times 110}{24 + 72} = 2.29 \text{ mm}$ From Table 5.8, the nearest higher standard module, m = 2.5 mm. (9. Revised centre distance : $a = \frac{m(z_1 + z_2)}{2} = \frac{2.5(24 + 72)}{2} = 120 \text{ mm.}$ 10. Calculation of b, d, v and ψ_p : \checkmark Face width (b): $b = \psi \times a = 0.3 \times 120 = 36 \text{ mm}$ Pitch diameter of pinion (d_1) : $d_1 = m \cdot z_1 = 2.5 \times 24 = 60 \text{ mm.}$ \checkmark Pitch line velocity (v) $v = \frac{\pi d_1 N_1}{60} = \frac{\pi \times 60 \times 10^{-3} \times 1200}{60} = 3.77 \text{ m/s}$ $\checkmark (\psi_p = \frac{b}{d_1}) = \frac{36}{60} = 0.6$ (1) Quality of gear : From Table 5.22, for v = 3.77 m/s, IS quality 8 gears are selected.

 $= 63.66 \times 1.03 \times 1.55 = 101.63$ N-m

Check for bending :

Induced bending stress, $\sigma_b = \frac{i+1}{a \cdot m \cdot b \cdot y} [M_i]$ Check

where

y = 0.414, for $z_1 = 24$, from Table 5.13. $\sigma_b = \frac{(3+1)}{120 \times 2.5 \times 36 \times 0.414} \times 101.63 \times 10^3 = 90.9 \text{ N/mm}^2$

÷

We find $\sigma_b < [\sigma_b]$. Thus *the design is satisfactory*.

Check for wear strength : Induced contact stress is given by

$$\sigma_c = 0.74 \frac{i+1}{a} \sqrt{\frac{i+1}{ib} \times E_{eq} [M_t]} B^{.13}$$

$$= 0.74 \left(\frac{3+1}{120}\right) \sqrt{\left(\frac{3+1}{3\times 36}\right) \times 2.15 \times 10^5 \times 101.63 \times 10^3}$$

$$= 701.71 \text{ N/mm}^2$$

We find $\sigma_c < [\sigma_c]$, thus *the design is safe and satisfactory*.

15. Check for plastic deformation :

 M_{t} = Rated torque = 63.66 N-m ... (already calculated)

Given that starting torque is 130% of rated torque.

 \therefore [M_t]_{max} = Maximum instantaneous torque = 1.3 × M_t

 $= 1.3 \times 63.66 = 82.758$ N-m

(i) Check for bending : Induced bending stress due to maximum instantaneous torque is given by

$$\sigma_{b \max} = \sigma_{b} \frac{[M_{t}]_{\max}}{M_{t}} = 90.9 \times \frac{82.758}{63.66} = 118.17 \text{ N/mm}^{2} [\because \sigma_{b} = 90.9 \text{ N/mm}^{2}]$$

From Table 5.23, for steel HB \leq 350, permissible bending stress is given by

 $[\sigma_b]_{\text{max}} = 0.8 \sigma_y = 0.8 \times 540 = 432 \text{ N/mm}^2$

Since $\sigma_{b \text{ max}} < [\sigma_b]_{\text{max}}$, the design is satisfactory. [:: $\sigma_y = 540 \text{ N/mm}^2$]

8.13

(ii) Check for wear strength : Induced contact stress due to maximum instantaneous torque is given by

$$(\sigma_{c \text{ max}} = \sigma_{c} \times \frac{|M_{T}|_{\text{max}}}{M_{T}})^{\beta \sim 1}$$

= 701.71 × $\frac{82.758}{63.66}$ = 912.22 N/mm² [$\because \sigma_{c} = 701.71 \text{ N/mmc}$

From Table 5.24, for steel HB \leq 350, permissible contact stress is given by $[\sigma_c]_{max} = 3.1 \sigma_v = 3.1 \times 540 = 1674 \text{ N/mm}^2$

Since $\sigma_{c \max} \leq [\sigma_c]_{\max}$, the design is safe and satisfactory against plastic deformation also. 8.22

Basic dimensions of pinion and gear: Refer Table 5.10.

Module :
$$m = 2.5 \text{ mm}$$

- Face width : b = 36 mm
- Height factor : $f_0 = 1$ \checkmark
- Bottom clearance : $c = 0.25 m = 0.25 \times 2.5 = 0.625 mm$ \checkmark
- Tooth depth : $h = 2.25 \text{ m} = 2.25 \times 2.5 = 5.625 \text{ mm}$ \checkmark

✓ Pitch circle diameter :
$$d_1 = m \cdot z_1 = 2.5 \times 24 = 60 \text{ mm}; \text{ and}
 d_2 = m \cdot z_2 = 2.5 \times 72 = 180 \text{ mm}.
 d_{a1} = (z_1 + 2f_0)m = (24 + 2 \times 1) 2.5 = 65 \text{ mm}; \text{ and}
 d_{a2} = (z_2 + 2f_0)m = (72 + 2 \times 1) 2.5 = 185 \text{ mm}.
 d_{11} = (z_1 - 2f_0)m - 2c
 = (24 - 2 \times 1) 2.5 - 2 \times 0.625 = 53.75 \text{ mm}; \text{ and}
 d_{12} = (z_2 - 2f_0)m - 2c
 = (72 - 2 \times 1) 2.5 - 2 \times 0.625
 = 173.75 \text{ mm}
 = 173.75 \text{ mm}$$