Example (5.20) It is desired to determine the proportions of (spur gear)drive to transmit 8 kW from a shaft rotating a 1200 r.p.m. to a low speed shaft, with a reduction of 3:1. Assume that the teeth are 20° full depth involute, with $(24$ teeth on the pinion. The pinion is to be of $4 \boldsymbol{\lambda} C 8$ normalized steel and gear of 30 C 8 normalized steel. Assume that the starting torque is 130% of the rated torque.
Given Data: $\mathrm{P}=8 \mathrm{~kW} ; \mathrm{N}_{1}=1200 \mathrm{r} . \mathrm{p} . \mathrm{m}$.

$$
\text { (i) }=3 ; \text { (} \phi=20^{\circ}:\left(z_{1}\right)=24 \text {; }
$$

Starting torque $=1.3 \times$ rated torque.
To find. Design a spur gear.

© Solution :

(1.) Gear ratio : $i=3$
(2.) Material selection : Pinion $=40$ C 8 normalized steel ; and

$$
\begin{equation*}
\text { Gear }=30 \text { C } 8 \text { normalized steel. } \tag{Given}
\end{equation*}
$$

(3.) Gear life : Assume 20,000 hours.
$\therefore \mathrm{N}=20000 \times 60 \times 1200=144 \times 10^{7}$ cycles
(4.) Design torque $\left[M_{t}\right]$:

where

$$
\mathrm{M}_{t}=\frac{60 \times \mathrm{P}}{2 \pi \mathrm{~N}_{1}}=\frac{60 \times 8 \times 10^{3}}{2 \pi \times 1200}=63.66 \mathrm{~N}-\mathrm{m}, \text { and }
$$

$$
\begin{equation*}
\mathrm{K} \cdot \mathrm{~K}_{d}=1.3 \tag{Assume}
\end{equation*}
$$

$$
\left[\mathrm{M}_{t}\right]=63.66 \times 1.3=82.76 \mathrm{~N}-\mathrm{m}
$$

(5.) Calculation of $E_{e q}, I \sigma_{b} J$ and $/ \sigma_{c}$ I:
(i) To find $E_{e q}$: From Table 5.20, $\mathrm{E}_{e q}=2.15 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ for steel.
(ii) To find $\left[\sigma_{b} /: \quad\right.$ Design bending stress, $\left[\mathrm{M}_{t}\right]=\frac{1.4 \times \mathrm{K}_{b l}}{n \cdot \mathrm{~K}_{\sigma}} \times \sigma_{-1}{ }^{8.18}$
$\checkmark K_{M}=1$, for steel $\mathrm{HB} \leq 350$ and $\mathrm{N} \geq 10^{7}$, from Table 5.14,
$\checkmark K_{0}=1.5$, for steel normalized, from Table 5.15,
$\checkmark \sigma_{-1}=0.35 \sigma_{u}+120$, for alloy steel, from Table 5.16

$$
=0.35 \times 720+120=372 \mathrm{~N} / \mathrm{mm}^{2}
$$

$\cdots\left[\because \sigma_{11}=720 \mathrm{~N} / \mathrm{mmm}_{\mathrm{m}}\right.$

$$
\left[\sigma_{b}\right]=\frac{1.4 \times 1}{2 \times 1.5} \times 372=173.6 \mathrm{~N} / \mathrm{mm}^{2}
$$

(iii) To find $/ \sigma_{c}$ /: Design contact stress, $\left[\sigma_{c}\right]^{m=} \mathrm{C}_{\mathrm{B}} \times \mathrm{HB} \times \mathrm{K}_{c \mid}$
where
$C_{B}=2.5$, for alloy steel normalized, from Table 5.18, $H B \leq 350$, from Table 5.18, and
$\mathrm{K}_{c l}=1$, for steel, $\mathrm{HB} \leq 350$ and $\mathrm{N} \geq 10^{7}$, from Table 5.19.

$$
\left[\sigma_{c}\right]=2.5 \times 300 \times 1=750 \mathrm{~N} / \mathrm{mm}^{2}
$$

6.) Centre distance (a): Assume $\psi=0.3$.

$$
\begin{aligned}
\text { B.13 } & \left.a \geq(i+1) \sqrt[3]{\left(\frac{0.74}{\left[\sigma_{c}\right]}\right)^{2} \times \frac{\mathrm{E}_{e q}\left[\mathrm{M}_{t}\right]}{i \psi}}\right) \\
& \geq(3+1) \sqrt[3]{\left(\frac{0.74}{750}\right)^{2} \times \frac{2.15 \times 10^{5} \times 82.76 \times 10^{3}}{3 \times 0.3}} \\
& \geq 107.2 \text { or } a=110 \mathrm{~mm}
\end{aligned}
$$

(7.) Given that $z_{1}=24 . \quad \therefore z_{2}=i z_{1}=3 \times 24=72$.
(8.) Module $(m):\left(m=\frac{2 a}{z_{1}+z_{2}}\right)=\frac{2 \times 110}{24+72}=2.29 \mathrm{~mm}$

From Table 5.8, the nearest higher standard module, $m=2.5 \mathrm{~mm}$.
(9.) Revised centre distance: $\left(a=\frac{8\left(z_{1}+z_{2}\right)}{2}=\frac{2.5(24+72)}{2}=120 \mathrm{~mm}\right.$.

(10.) Calculation of b, d, v and ψ_{p} :

$\checkmark \quad$ Face width $(b):(b=\psi \times a)=0.3 \times 120=36 \mathrm{~mm}$
\checkmark Pitch diameter of pinion $\left(d_{1}\right):\left(d_{1}=m \cdot z_{1}\right)=2.5 \times 24=60 \mathrm{~mm}$.
\checkmark Pitch line velocity $(v) \quad v=\frac{\pi d_{1} \mathrm{~N}_{1}}{60}=\frac{8.15}{8.15}=\frac{\pi \times 60 \times 10^{-3} \times 1200}{60}=3.77 \mathrm{~m} / \mathrm{s}$

$$
\checkmark \psi_{p}=\frac{b}{d_{1}}=\frac{36}{60}=0.6
$$

(I1.) Quality of gear: From Table 5.22 , for $v=3.7 / \mathrm{m} / \mathrm{s}$, IS quality 8 gears are selected.

Revised design torque $\left|\boldsymbol{M}_{\mathbf{t}}\right|$:
From Table 5.11 , for $\psi=0.6, K=1.03$
From Table 5.12 , for $1 S$ quality $8, ~ \mathrm{HB} \leq 350$ and $r=3.77 \mathrm{~m} / \mathrm{s}, \mathrm{K}_{d}=1.55$.
$\therefore\left(\left|M_{t}\right|=M_{t} \cdot K \cdot K_{d}\right)^{8.15}$

$$
=63.66 \times 1.03 \times 1.55=101.63 \mathrm{~N}-\mathrm{m}
$$

(13.) Check for bending:

Induced bending stress. $\sigma_{b}=\frac{i+1}{a \cdot m \cdot b \cdot y}\left[M_{1}, 1\right)$ check
where $\quad y=0.414$, for $z_{1}=24$, from Table 5.13.

$$
\sigma_{b}=\frac{(3+1)}{120 \times 2.5 \times 36 \times 0.414} \times 101.63 \times 10^{3}=90.9 \mathrm{~N} / \mathrm{mm}^{2}
$$

We find $\sigma_{b}<\left[\sigma_{b}\right]$. Thus the design is satisfactory.
14. Check for wear strength: Induced contact stress is given by

$$
\begin{aligned}
\sigma_{c} & =0.74 \frac{i+1}{a} \sqrt{\frac{i+1}{i b} \times \mathrm{E}_{e q}\left[\mathrm{M}_{t}\right]} 8.13 \\
& =0.74\left(\frac{3+1}{120}\right) \sqrt{\left(\frac{3+1}{3 \times 36}\right) \times 2.15 \times 10^{5} \times 101.63 \times 10^{3}} \\
& =701.71 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

We find $\sigma_{c}<\left[\sigma_{c}\right]$, thus the design is safe and satisfactory.
15. Check for plastic deformation:

$$
M_{t}=\text { Rated torque }=63.66 \mathrm{~N}-\mathrm{m}
$$

... (already calculated)
Given that starting torque is 130% of rated torque.
$\therefore \quad\left[\mathrm{M}_{t}\right]_{\max }=$ Maximum instantaneous torque $=1.3 \times \mathrm{M}_{t}$

$$
=1.3 \times 63.66=82.758 \mathrm{~N}-\mathrm{m}
$$

(i) Check for bending : Induced bending stress due to maximum instantaneous torque is given by

$$
\left.\sigma_{b \max }=\sigma_{b} \frac{\left[\mathrm{M}_{t}\right]_{\max }}{\mathrm{M}_{t}}\right)^{82 \backslash}=90.9 \times \frac{82.758}{63.66}=118.17 \mathrm{~N} / \mathrm{mm}^{2} \quad\left[\because \sigma_{b}=90.9 \mathrm{~N} / \mathrm{mm}^{2}\right]
$$

From Table 5.23 , for steel $\mathrm{HB} \leq 350$, permissible bending stress is given by

$$
\left[\sigma_{b}\right]_{\max }=0.8 \sigma_{y}=0.8 \times 540=432 \mathrm{~N} / \mathrm{mm}^{2}
$$

Since $\quad \sigma_{b \text { max }}<\left[\sigma_{b}\right]_{\max }$, the design is satisfactory. $\quad\left[\because \sigma_{y}=540 \mathrm{~N} / \mathrm{mm}^{2}\right]$
(ii) Check for wear strength: Induced contact stress due to maximum instantanam torque is given by

$$
\left.\sigma_{c \text { max }}=\sigma_{c} \times \frac{\left(M_{1}\right]_{\max }}{M_{i}}\right)
$$

$$
701.71 \times \frac{82.758}{63.66}=912.22 \mathrm{~N} / \mathrm{mm}^{2} \quad\left[\because \sigma_{c}=701.71 \mathrm{~N} / \mathrm{mm}_{\mathrm{m}}\right.
$$

From Table 5.24 , for steel $\mathrm{HB} \leq 350$, permissible contact stress is given by

$$
\left[\sigma_{c}\right]_{\max }=3.1 \sigma_{y}=3.1 \times 540=1674 \mathrm{~N} / \mathrm{mm}^{2}
$$

Since $\sigma_{c \max }<\left[\sigma_{c}\right]_{\max }$, the design is safe and satisfactory against plastic deformation also.
(16. Basic dimensions of pinion and gear : Refer Table 5.10.
\checkmark Module : $\boldsymbol{m}=\mathbf{2} .5 \mathbf{m m}$
\checkmark Face width : $b=\mathbf{3 6} \mathbf{~ m m}$
\checkmark Height factor : $f_{0}=1$
\checkmark Bottom clearance : $c=0.25 m=0.25 \times 2.5=\mathbf{0 . 6 2 5} \mathbf{~ m m}$
\checkmark Tooth depth : $h=2.25 \mathrm{~m}=2.25 \times 2.5=\mathbf{5 . 6 2 5} \mathbf{~ m m}$
\checkmark Pitch circle diameter : $d_{1}=m \cdot z_{1}=2.5 \times 24=60 \mathrm{~mm}$; and $d_{2}=m \cdot z_{2}=2.5 \times 72=180 \mathrm{~mm}$.
\checkmark Tip diameter :
$d_{a 1}=\left(z_{1}+2 f_{0}\right) m=(24+2 \times 1) 2.5=65 \mathrm{~mm} ;$ and $d_{a 2}=\left(z_{2}+2 f_{0}\right) m=(72+2 \times 1) 2.5=185 \mathrm{~mm}$.
\checkmark Root diameter :

$$
\begin{aligned}
d_{f 1} & =\left(z_{1}-2 f_{0}\right) m-2 c \\
& =(24-2 \times 1) 2.5-2 \times 0.625=53.75 \mathrm{~mm} ; \text { and } \\
d_{f 2} & =\left(z_{2}-2 f_{0}\right) m-2 c=(72-2 \times 1) 2.5-2 \times 0.625 \\
& =173.75 \mathrm{~mm}
\end{aligned}
$$

